6/12x+4=2/11x+16

Simple and best practice solution for 6/12x+4=2/11x+16 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6/12x+4=2/11x+16 equation:



6/12x+4=2/11x+16
We move all terms to the left:
6/12x+4-(2/11x+16)=0
Domain of the equation: 12x!=0
x!=0/12
x!=0
x∈R
Domain of the equation: 11x+16)!=0
x∈R
We get rid of parentheses
6/12x-2/11x-16+4=0
We calculate fractions
66x/132x^2+(-24x)/132x^2-16+4=0
We add all the numbers together, and all the variables
66x/132x^2+(-24x)/132x^2-12=0
We multiply all the terms by the denominator
66x+(-24x)-12*132x^2=0
Wy multiply elements
-1584x^2+66x+(-24x)=0
We get rid of parentheses
-1584x^2+66x-24x=0
We add all the numbers together, and all the variables
-1584x^2+42x=0
a = -1584; b = 42; c = 0;
Δ = b2-4ac
Δ = 422-4·(-1584)·0
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1764}=42$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-42}{2*-1584}=\frac{-84}{-3168} =7/264 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+42}{2*-1584}=\frac{0}{-3168} =0 $

See similar equations:

| 89=29+4b | | 5x-22=7x | | 4x+16=4x+32 | | 10x+36=16x+18 | | 23+28+40+y-50=120 | | 2(7a+8)=-22+4a | | -17=8(5y+2) | | x+85=129 | | b+6=20 | | 8y-5/5=9y/y+2 | | 3.25(x+30)=2+0.25(x-16) | | 8x+7x=32 | | 2/3x6=x | | .8=x+5 | | (2x+57)=115 | | 6x-8=4x12 | | 3x+13=83 | | x+10=-50 | | 0.75(x+20)=7+0.5(x-10) | | 6x+7(-2x-14)=-194 | | 2+8x/3+1=0 | | -4.8r=-12.48 | | 4x-5(x-3)=10 | | -2x-4(-x+2)=-18 | | 2+4(b-3)=-28 | | r=69r-8 | | 30(5x)=20 | | 81/3=n | | 17z-4(3-z)=22-5z | | 16x^2+3=7 | | Y=6.8x | | 1/3x+2/5=1/10 |

Equations solver categories