6/2x-9-2/2x=x+1

Simple and best practice solution for 6/2x-9-2/2x=x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6/2x-9-2/2x=x+1 equation:



6/2x-9-2/2x=x+1
We move all terms to the left:
6/2x-9-2/2x-(x+1)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We get rid of parentheses
6/2x-2/2x-x-1-9=0
We multiply all the terms by the denominator
-x*2x-1*2x-9*2x+6-2=0
We add all the numbers together, and all the variables
-x*2x-1*2x-9*2x+4=0
Wy multiply elements
-2x^2-2x-18x+4=0
We add all the numbers together, and all the variables
-2x^2-20x+4=0
a = -2; b = -20; c = +4;
Δ = b2-4ac
Δ = -202-4·(-2)·4
Δ = 432
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{432}=\sqrt{144*3}=\sqrt{144}*\sqrt{3}=12\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-12\sqrt{3}}{2*-2}=\frac{20-12\sqrt{3}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+12\sqrt{3}}{2*-2}=\frac{20+12\sqrt{3}}{-4} $

See similar equations:

| -14+4n=3n+3n | | -3(2t+10)=-56 | | 40/24=3x+5/2x | | 10-3m=5+2 | | 6/x-9-2/2x=x+1 | | 3(5x+5)+3=x+4 | | 2(-5p-5)=-90 | | 3e+15-5e=2e-3(3-4/3e) | | -6(-6-3)-2+8a=0 | | 5b=110 | | 5b=135 | | x2−9x+20.25=0 | | 4t=160 | | 4c(c-2)=0 | | 90x=3600 | | 6b=156 | | -2/3(5/6y-1/6)=3/9 | | 6b+3=1-4b+3 | | y+6y-12=1y | | 5a+9=-26 | | -(x+8)=-2 | | 3(2x-5)=9(10-x)# | | -6(1-7x)=120 | | 4=b/3+-1 | | 14+l=21 | | 1000÷10=n2-54 | | 44×w=748 | | 2y+273=360 | | 8d-4=4(2d+3) | | 1+8x-7x=-1 | | 1/7÷n=11 | | 2x+12x+28=6x+40+5x |

Equations solver categories