6/7a-12=3/14a+15

Simple and best practice solution for 6/7a-12=3/14a+15 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6/7a-12=3/14a+15 equation:



6/7a-12=3/14a+15
We move all terms to the left:
6/7a-12-(3/14a+15)=0
Domain of the equation: 7a!=0
a!=0/7
a!=0
a∈R
Domain of the equation: 14a+15)!=0
a∈R
We get rid of parentheses
6/7a-3/14a-15-12=0
We calculate fractions
84a/98a^2+(-21a)/98a^2-15-12=0
We add all the numbers together, and all the variables
84a/98a^2+(-21a)/98a^2-27=0
We multiply all the terms by the denominator
84a+(-21a)-27*98a^2=0
Wy multiply elements
-2646a^2+84a+(-21a)=0
We get rid of parentheses
-2646a^2+84a-21a=0
We add all the numbers together, and all the variables
-2646a^2+63a=0
a = -2646; b = 63; c = 0;
Δ = b2-4ac
Δ = 632-4·(-2646)·0
Δ = 3969
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{3969}=63$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(63)-63}{2*-2646}=\frac{-126}{-5292} =1/42 $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(63)+63}{2*-2646}=\frac{0}{-5292} =0 $

See similar equations:

| 8/9a+12=2/9+34 | | x+1.3=4.6 | | X-2/3x=25 | | z/7+2=1 | | 44x-30x+15=12-2x=19 | | X^2+615=2^y | | 12c-8+c=2c+14 | | 7–5v=-29–8v | | x+8/3+3=0 | | 109+10x=13x-93 | | 3x+7/5=4 | | 3+x+8/3=0 | | 60=x-(0.45*x) | | 5p+10-3p=40 | | 10+e=1/5e+1e-10 | | X^2+615=2y | | 2x-12=27-3x | | 8x+6x=82 | | 288x-864=288x+468 | | 3x-18=36/4 | | 8/1+c=4/5 | | 7x+12=3x. | | 3r+4=12+3= | | 2x^2+x=2450 | | 1/3+a=15/4 | | (x+4)+(2x-1)=180 | | j-5=4.3 | | 5w^2+2w-8=0 | | 2(3b+-4)=4b+2 | | 2(3b+-4)=4b+3 | | 2(3b+-4)=1b+3 | | 2(3b+-4)=1b+4 |

Equations solver categories