6/7k-12=3/14k+15

Simple and best practice solution for 6/7k-12=3/14k+15 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6/7k-12=3/14k+15 equation:



6/7k-12=3/14k+15
We move all terms to the left:
6/7k-12-(3/14k+15)=0
Domain of the equation: 7k!=0
k!=0/7
k!=0
k∈R
Domain of the equation: 14k+15)!=0
k∈R
We get rid of parentheses
6/7k-3/14k-15-12=0
We calculate fractions
84k/98k^2+(-21k)/98k^2-15-12=0
We add all the numbers together, and all the variables
84k/98k^2+(-21k)/98k^2-27=0
We multiply all the terms by the denominator
84k+(-21k)-27*98k^2=0
Wy multiply elements
-2646k^2+84k+(-21k)=0
We get rid of parentheses
-2646k^2+84k-21k=0
We add all the numbers together, and all the variables
-2646k^2+63k=0
a = -2646; b = 63; c = 0;
Δ = b2-4ac
Δ = 632-4·(-2646)·0
Δ = 3969
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{3969}=63$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(63)-63}{2*-2646}=\frac{-126}{-5292} =1/42 $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(63)+63}{2*-2646}=\frac{0}{-5292} =0 $

See similar equations:

| 6x2=(3x2)x | | 7x-2=20(x+1) | | -8t–3t+2=-5t–6t | | X+40+x+90=110 | | x-92=-62 | | 144=x-5 | | -20=4m-32+2-14m | | -12/x=-22/x-5 | | (2y+2)^2=10 | | 5d+2(2-d)=(1+)+1 | | 3y+20=1y-8 | | x+5/9(x)=140 | | 2(y+2)=21 | | 10+6g=4g-10 | | 2d+16=6(1/3d+1) | | n-10+12n+7=7(2+4n)-5(n+7) | | -15=-4a+7a | | 8x-6(x-1)=7 | | 33(11+x)=21-(1+x) | | 12^x-144x+1296x=0 | | 2n+3+11+16=40 | | 3/2(x-5=19 | | 0=v/–4+ –3 | | 12^x-144x+1296=0 | | 169=13z | | 9x+1+9x+1=88 | | 109+6x,x=3 | | y/4=10.4”5 | | 3n+9=33. | | -3(v+1)=v-9+2(3v+9) | | 12=12w-6w | | 2x-1=x+-4 |

Equations solver categories