6/x-1+8/3x+1=15/3x+1

Simple and best practice solution for 6/x-1+8/3x+1=15/3x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6/x-1+8/3x+1=15/3x+1 equation:



6/x-1+8/3x+1=15/3x+1
We move all terms to the left:
6/x-1+8/3x+1-(15/3x+1)=0
Domain of the equation: x!=0
x∈R
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: 3x+1)!=0
x∈R
We add all the numbers together, and all the variables
6/x+8/3x-(15/3x+1)=0
We get rid of parentheses
6/x+8/3x-15/3x-1=0
We calculate fractions
18x/3x^2+(-15x+8)/3x^2-1=0
We multiply all the terms by the denominator
18x+(-15x+8)-1*3x^2=0
Wy multiply elements
-3x^2+18x+(-15x+8)=0
We get rid of parentheses
-3x^2+18x-15x+8=0
We add all the numbers together, and all the variables
-3x^2+3x+8=0
a = -3; b = 3; c = +8;
Δ = b2-4ac
Δ = 32-4·(-3)·8
Δ = 105
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{105}}{2*-3}=\frac{-3-\sqrt{105}}{-6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{105}}{2*-3}=\frac{-3+\sqrt{105}}{-6} $

See similar equations:

| 5^1-7x=2^x | | 2x+13=-11+4x | | -s-10=-7s+8 | | 5^11-7x=2^x | | -2-2n=-2(6n+1) | | 5r+2=-4(3-1) | | 3(x+4)=5(4-x) | | 0.22(2x+9)=0.2x+8.2 | | 5(n+1)^2=40 | | (6)+2y=0 | | 6c-8+5+3c+14=140 | | F(-4)=1/4x+2 | | -2n+6n=12 | | 0.5(8x–2)=–0.25(16–4x) | | x^=-7x | | F(0)=1/4x+2 | | 5x-9x=-14+(-14) | | -7(v-2)=-2v-36 | | x+10=15. | | u/4=4 | | 8=5k-k | | 7j-6=8j+6+3j | | 4(b–1)=2b+10 | | 3=x+3-5x=6=x-5x | | -5h=-6-3h | | 30=3*y | | -n-2=21 | | -3+6n=5n-10 | | -12=4v | | 5x+35x-9=10(4x+10) | | 13z–9z=12 | | 1/2x+3=-(x+1) |

Equations solver categories