60-c(3c+4)=4(c+6)+c

Simple and best practice solution for 60-c(3c+4)=4(c+6)+c equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 60-c(3c+4)=4(c+6)+c equation:



60-c(3c+4)=4(c+6)+c
We move all terms to the left:
60-c(3c+4)-(4(c+6)+c)=0
We multiply parentheses
-3c^2-4c-(4(c+6)+c)+60=0
We calculate terms in parentheses: -(4(c+6)+c), so:
4(c+6)+c
We add all the numbers together, and all the variables
c+4(c+6)
We multiply parentheses
c+4c+24
We add all the numbers together, and all the variables
5c+24
Back to the equation:
-(5c+24)
We get rid of parentheses
-3c^2-4c-5c-24+60=0
We add all the numbers together, and all the variables
-3c^2-9c+36=0
a = -3; b = -9; c = +36;
Δ = b2-4ac
Δ = -92-4·(-3)·36
Δ = 513
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{513}=\sqrt{9*57}=\sqrt{9}*\sqrt{57}=3\sqrt{57}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-3\sqrt{57}}{2*-3}=\frac{9-3\sqrt{57}}{-6} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+3\sqrt{57}}{2*-3}=\frac{9+3\sqrt{57}}{-6} $

See similar equations:

| 16=5t-9t | | 50=2.1t+9.8t^2/2 | | s-1=3.97 | | 11x+60=180 | | q+8=-13 | | 6x+17=132 | | 48=-7y-1 | | 3x=12-5x+6 | | 9.46=2k | | 6=m/118 | | n-2.8=1.3 | | t-13.76=4 | | 14=4+9y | | 3.83=c-10.17 | | 16(4-3x)=96(-1/2x+1) | | 12-h=-8 | | 6(2x-5)=-90 | | -6(x+3)-8=-26 | | 50=2.1t+9.8t^2 | | x+2/7-x+3/2=3/14 | | x²+x-110=0 | | 8x+2=9x+9-x-7 | | 2x+(3x+5x)=61 | | 32r=288 | | -|2x-4|=-11 | | 84=w(w+8) | | m+6.8=18.8 | | 2x+3x+5x=61 | | 2y=29-8y=5 | | 17=16-a/2 | | x+1.5=2.75 | | k-2=4.44 |

Equations solver categories