If it's not what You are looking for type in the equation solver your own equation and let us solve it.
60=8x^2+157x
We move all terms to the left:
60-(8x^2+157x)=0
We get rid of parentheses
-8x^2-157x+60=0
a = -8; b = -157; c = +60;
Δ = b2-4ac
Δ = -1572-4·(-8)·60
Δ = 26569
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{26569}=163$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-157)-163}{2*-8}=\frac{-6}{-16} =3/8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-157)+163}{2*-8}=\frac{320}{-16} =-20 $
| 6x+185= | | x+18+x=84 | | -7-3a=1-49 | | 10x=2x+80 | | 3b+40+4b-28=180 | | -8x2-157x+60=0 | | (x+9)•(4x-1)=0 | | -h=3h+1)+1 | | 18-17j=-11+17-19j | | -10−9h=-8h | | 7(x-5)-5x=17 | | -5-8(1-7n)=-25 | | 6z=8+8z | | 9-5(x+1)+2x=4-3x | | 11x+13=123 | | 6p-40=p-5 | | 8m*3.95=75.55 | | 4r=17+3r | | 15u-11=16u-5 | | 8m-3.95=75.55 | | 4t=8t-52 | | -7x+12=16 | | 8m/3.95=75.55 | | 4x-40=3x-13 | | -9=-11/b/8 | | u=3u-66 | | 17q−2q−8q=14 | | 1+d=-9+2d | | 3g-3g+3g-2g=6 | | 5x+9-2x+13=67 | | w=3w-54 | | 15a−2(a+6)=14 |