60=t(16+t)

Simple and best practice solution for 60=t(16+t) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 60=t(16+t) equation:



60=t(16+t)
We move all terms to the left:
60-(t(16+t))=0
We add all the numbers together, and all the variables
-(t(t+16))+60=0
We calculate terms in parentheses: -(t(t+16)), so:
t(t+16)
We multiply parentheses
t^2+16t
Back to the equation:
-(t^2+16t)
We get rid of parentheses
-t^2-16t+60=0
We add all the numbers together, and all the variables
-1t^2-16t+60=0
a = -1; b = -16; c = +60;
Δ = b2-4ac
Δ = -162-4·(-1)·60
Δ = 496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{496}=\sqrt{16*31}=\sqrt{16}*\sqrt{31}=4\sqrt{31}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4\sqrt{31}}{2*-1}=\frac{16-4\sqrt{31}}{-2} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4\sqrt{31}}{2*-1}=\frac{16+4\sqrt{31}}{-2} $

See similar equations:

| X-8=3x-9-2 | | 1/2(12-4s^2)-2s(1-s)=8 | | 5(x+8)=13x | | x/0.25=22/0.8 | | -14=v+8 | | -6x+4=(-x-3) | | -4x-28=96 | | 10x+72=210 | | 4y+6=5y+6 | | r+4/r-2=1/4 | | -4(1x-5)=12 | | 2(4x-9)=62 | | 2.3^x=0.3^-x | | 7(-6x+3)=-105 | | 2x-5(x-6)=34+5x | | 7x-4+5x=8x+8 | | -7=4x-5x+4 | | 3/8t-2/3=-11/3 | | 7x-26=9 | | X+8+3x=56 | | 15-4x-1=5x-2x | | 3+5x+3x=-53 | | 4(x-2)-19=-51 | | -4x+3+6x=-5 | | 2.2x2-7x+3=0 | | 2h+5=41 | | 0=6x2-13x-5 | | -6(x+3)-3=-15 | | 0=5x^2+7x+3 | | 9m-9=2m+7 | | x+2(x+1)=11+2(x+2) | | Y-6/x—-3=4 |

Equations solver categories