If it's not what You are looking for type in the equation solver your own equation and let us solve it.
60x^2+x=10
We move all terms to the left:
60x^2+x-(10)=0
a = 60; b = 1; c = -10;
Δ = b2-4ac
Δ = 12-4·60·(-10)
Δ = 2401
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2401}=49$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-49}{2*60}=\frac{-50}{120} =-5/12 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+49}{2*60}=\frac{48}{120} =2/5 $
| 10x+5-4=15 | | 2(z-3)+5=3(z-1) | | -25=5(x+2.5) | | 10x+4-5=14 | | 8=z+7 | | 500=5000(1+2r) | | (-10+8)=7x-3x | | - ( x2 + 19 x - 42 )=0 | | -(x2 +19 x-42)=0 | | 13(2)=12y=25 | | z/32.5=2.5 | | 500=-15=5x2 | | 1/5(d−3)=2, | | a-8.1=20.6 | | x+3x+5x−18=180 | | 5x10x=8 | | x+3x+6x−15=180 | | 9x-x*x=0 | | 3j*7=105 | | d/45=3 | | E^(3x)=24 | | t/6.5=4 | | 3/7=3,6/x | | -4/5(5x-10)=200 | | 1/2a=11/2 | | 3x=25,2 | | x-0.6x=270000 | | w/2.2=10 | | 2^x=6=20 | | x+0.6x=270000 | | 3x-9=2187 | | 8c=496 |