If it's not what You are looking for type in the equation solver your own equation and let us solve it.
60y^2-20y-5=0
a = 60; b = -20; c = -5;
Δ = b2-4ac
Δ = -202-4·60·(-5)
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-40}{2*60}=\frac{-20}{120} =-1/6 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+40}{2*60}=\frac{60}{120} =1/2 $
| 8m-9=3+10 | | 2s+1=s+10 | | 3-(x+5)=-30+(x+4) | | 12x+6x^2-2=6x^2+4x+26 | | 9.33-7.5b=-7.2-9.4b | | -10+2q-9q=-3q+10 | | 5-5y=2-7y+5 | | 10+6r=-r-4 | | z4+4z+5=0 | | -8m+2m-3=-3+9m | | 9−y=−3 | | 8j-6=10j+8 | | 120/a=3 | | 2+4z=5z-7 | | 15x-12=7x-4-2x+27 | | -9k-7=-10k | | -9-7=-10k | | 32=8x9 | | -9+7=10k | | 6x-30=198 | | 3x-14=2x-30 | | 82-5x=3x+2 | | 5^x-625^8x=-1 | | 7x-29=4x+10 | | 5x/5=9 | | 5h-3=-28 | | r+4.2/3=-2.5 | | 9r-1=26 | | 10w+1=-99 | | 2b+2=-4 | | 5c+4=3c=14 | | 14x+14=518 |