61/9x+3/13x=281/3

Simple and best practice solution for 61/9x+3/13x=281/3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 61/9x+3/13x=281/3 equation:



61/9x+3/13x=281/3
We move all terms to the left:
61/9x+3/13x-(281/3)=0
Domain of the equation: 9x!=0
x!=0/9
x!=0
x∈R
Domain of the equation: 13x!=0
x!=0/13
x!=0
x∈R
We add all the numbers together, and all the variables
61/9x+3/13x-(+281/3)=0
We get rid of parentheses
61/9x+3/13x-281/3=0
We calculate fractions
(-32877x^2)/1053x^2+7137x/1053x^2+243x/1053x^2=0
We multiply all the terms by the denominator
(-32877x^2)+7137x+243x=0
We add all the numbers together, and all the variables
(-32877x^2)+7380x=0
We get rid of parentheses
-32877x^2+7380x=0
a = -32877; b = 7380; c = 0;
Δ = b2-4ac
Δ = 73802-4·(-32877)·0
Δ = 54464400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{54464400}=7380$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7380)-7380}{2*-32877}=\frac{-14760}{-65754} =820/3653 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7380)+7380}{2*-32877}=\frac{0}{-65754} =0 $

See similar equations:

| y=-9^2+4 | | -2(2x-1)=5 | | 7x-8=6+17 | | (3)/(x+1)+(4)/(x)=(7)/(x+2) | | y=|-11-10| | | x+62/3=11 | | (10)(1/2)(x)(4)=-40 | | 12x=10(x-1) | | -2a-12=8 | | 9+4c=1 | | 3x/4-12/3=2/3x | | 13.0t=17.3-5.4t | | 13^2-6x;x=-3 | | (9y+5)°=58° | | (x^2)/(x+10)=50 | | 3.2p=10.6 | | 6x+33=21+3x | | 45x+915=710 | | 3/5+(-1/10)=x+1/4 | | 16x+37=413 | | k.5=60 | | 47x+25=39 | | 410x+125=511 | | 39x+43=36 | | 3x-x.2=60 | | 12x+26=412 | | 5+z=6,03 | | 32x+14=64 | | 43x+63=512 | | 8-8+7x=49 | | 47x+37=123 | | x+x–8=x+13 |

Equations solver categories