If it's not what You are looking for type in the equation solver your own equation and let us solve it.
624=(10+2x)(30+2x)
We move all terms to the left:
624-((10+2x)(30+2x))=0
We add all the numbers together, and all the variables
-((2x+10)(2x+30))+624=0
We multiply parentheses ..
-((+4x^2+60x+20x+300))+624=0
We calculate terms in parentheses: -((+4x^2+60x+20x+300)), so:We get rid of parentheses
(+4x^2+60x+20x+300)
We get rid of parentheses
4x^2+60x+20x+300
We add all the numbers together, and all the variables
4x^2+80x+300
Back to the equation:
-(4x^2+80x+300)
-4x^2-80x-300+624=0
We add all the numbers together, and all the variables
-4x^2-80x+324=0
a = -4; b = -80; c = +324;
Δ = b2-4ac
Δ = -802-4·(-4)·324
Δ = 11584
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{11584}=\sqrt{64*181}=\sqrt{64}*\sqrt{181}=8\sqrt{181}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-8\sqrt{181}}{2*-4}=\frac{80-8\sqrt{181}}{-8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+8\sqrt{181}}{2*-4}=\frac{80+8\sqrt{181}}{-8} $
| 180=90+50+x+51 | | -3/5d-9=6 | | 180=20+90+x+79 | | 180=20+90+x=79 | | 6=4-(k/3) | | R(x)=14(2x+1)−1+28x−14 | | (x-1)+120=180 | | 17-2xx=5 | | 10-5x=-x-18 | | 4x+2=12+x | | 180=60+85+x+44 | | 180=85+45+10x | | 180=70+90+6x+2 | | -11+z/9.9=1 | | 12^4x-10=69 | | 7y=1/2+11/4 | | 5n-7+7=23+7 | | 6x+6=27-x | | H(t)=-16+32+9 | | 61=8p+5 | | 2x-6=03 | | 3x-11=360 | | -3=5+2r | | D=-16t^2-4t+412 | | -3k+7=-17 | | 2^3m=2^-m | | -72=-8p | | −5.2=5.1y−4.6y+5.3 | | 3=15+r | | 6^2n=36 | | 2x3+48=3x2+32x | | 4x-2=122 |