If it's not what You are looking for type in the equation solver your own equation and let us solve it.
62y+3-21y^2=0
a = -21; b = 62; c = +3;
Δ = b2-4ac
Δ = 622-4·(-21)·3
Δ = 4096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4096}=64$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(62)-64}{2*-21}=\frac{-126}{-42} =+3 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(62)+64}{2*-21}=\frac{2}{-42} =-1/21 $
| Y^2+2y=2 | | -3(x+6+5=-4 | | 1140=12(-14x-31) | | 62y+3-21y=0 | | 77-x=198 | | 8(7x-16)=880 | | -2x+-20=6x+12 | | -1256=-8(-11x-19) | | 8^x-10=59 | | 10+14x2=48 | | 8(11x-31)=1072 | | 2x(1/2x-6)+8x=-1.2x+7(2-2/5x)=x2 | | 1044=12(8x-33) | | 3(5x+10)+10=6x(x+10) | | 2a÷14=3a+12÷24 | | 12(8x+21)=-708 | | 2x(1/2x-6)+8x=-1.2x+7(2-2/5x)=x^2 | | 2(6t)=24-2t | | -7(-12x-25)=763 | | 11(-12x+22)=-814 | | -2=-4n-5+1n | | 13d+20=20 | | 8(-7x+20)=-456 | | D=7/5(m-3) | | 15(8x-31)=615 | | 38 =n12 | | -7(-9x-31)=784 | | -7(-14x-34)=-1036 | | 28=r-6 | | 1.3^2x=78 | | -7(9x-16)=-896 | | 2+n-4n=-4 |