63=(2x+10)(x+3)

Simple and best practice solution for 63=(2x+10)(x+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 63=(2x+10)(x+3) equation:



63=(2x+10)(x+3)
We move all terms to the left:
63-((2x+10)(x+3))=0
We multiply parentheses ..
-((+2x^2+6x+10x+30))+63=0
We calculate terms in parentheses: -((+2x^2+6x+10x+30)), so:
(+2x^2+6x+10x+30)
We get rid of parentheses
2x^2+6x+10x+30
We add all the numbers together, and all the variables
2x^2+16x+30
Back to the equation:
-(2x^2+16x+30)
We get rid of parentheses
-2x^2-16x-30+63=0
We add all the numbers together, and all the variables
-2x^2-16x+33=0
a = -2; b = -16; c = +33;
Δ = b2-4ac
Δ = -162-4·(-2)·33
Δ = 520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{520}=\sqrt{4*130}=\sqrt{4}*\sqrt{130}=2\sqrt{130}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-2\sqrt{130}}{2*-2}=\frac{16-2\sqrt{130}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+2\sqrt{130}}{2*-2}=\frac{16+2\sqrt{130}}{-4} $

See similar equations:

| 4/5x-5=9/5 | | -2n+-10=8 | | n(2/9)-31=16+n(7/9) | | 2v=-v+21 | | 64x^2-1=8 | | 30p+100=25 | | (2x+10)(x+3)=63 | | 3(x+3)=6x+3-3x+6 | | 5y+6-2=-17 | | x=3x1.5x10000000000000 | | -3(4x+3)+4(6x=1)=43 | | 4.04-2t=1.84 | | 12x-(-5)=101 | | -1+64x^2=8 | | X2+18x+81=16 | | -3/8x=72 | | -13+a=-69 | | 3x+5/6=5/6 | | 9/s+14=41 | | h=-16(2)^2+125(2) | | 2x+2x^2=180 | | 2x^2-2x-12=100 | | (x-4)(x+4)=22x-8 | | 25+42.95x=60+49.95x | | (x+3)^2-49=0 | | 0.8x+4.8=0.16x-0.64 | | 5(w+1)-w=4(w+1)+9 | | -x^2+47x+30=0 | | (X+4)/10=(1/5)+(x-2)/8 | | 1/5x+7=322/45 | | 661=37-(-26h) | | 22/4x=12x+126 |

Equations solver categories