If it's not what You are looking for type in the equation solver your own equation and let us solve it.
63x+7x*7x=16
We move all terms to the left:
63x+7x*7x-(16)=0
Wy multiply elements
49x^2+63x-16=0
a = 49; b = 63; c = -16;
Δ = b2-4ac
Δ = 632-4·49·(-16)
Δ = 7105
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7105}=\sqrt{49*145}=\sqrt{49}*\sqrt{145}=7\sqrt{145}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(63)-7\sqrt{145}}{2*49}=\frac{-63-7\sqrt{145}}{98} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(63)+7\sqrt{145}}{2*49}=\frac{-63+7\sqrt{145}}{98} $
| 6x+11+11-9=180 | | 10x-4x+128=10x+72 | | 3x+15-6x-2=30 | | 4x+3=16-4x | | 5/2x+1/2x=9/2+7/2x | | 5/2x+1/2x=9/2+7/4x | | 10-10x=155-43 | | 5x-10+3x+3=45 | | 3x+17=25.3-4.6x | | 7.6x=8.3 | | 3x-5=11+(x-6) | | 12-13=a-8 | | 0=−2y^2-64 | | 12-14=a-8 | | 6m-7=9-2m | | 5x-6x=-12 | | 29=l | | 3b+6=5b+7 | | 2x-12=37 | | -5x(3+2x)=0 | | y=3-10 | | 2(x+1)+3(x+1)=5 | | -2a-8=-12 | | 2x+50=10x+100 | | 4w-15=30 | | 3x-1=5(x-3) | | 5(1.44)^x=19x+89 | | 6x²-18x=0 | | x+3x-4x+7x-4x=2-4+5 | | 7+2x^2=47 | | (6x-18)=6(x-3) | | 4u-14=0 |