If it's not what You are looking for type in the equation solver your own equation and let us solve it.
64+-112x+49x^2=0
We add all the numbers together, and all the variables
49x^2-112x=0
a = 49; b = -112; c = 0;
Δ = b2-4ac
Δ = -1122-4·49·0
Δ = 12544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{12544}=112$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-112)-112}{2*49}=\frac{0}{98} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-112)+112}{2*49}=\frac{224}{98} =2+2/7 $
| 12+4y=-2 | | 4(3+x)-x=6+3(x+2 | | 4(2x+4)=240 | | 9w–7=20 | | 1x=6x-30 | | -12+5v=18 | | -36=-2x | | 10n-6n=16 | | 10x+6=7x+3 | | 5a–6=9 | | 2x–6=24 | | 5j–10=10 | | 104b^2-75b-14=0 | | -10x+8=5x-7 | | 3+10x=3+6 | | 4=6y-2y | | 10-2x+6x=x+22 | | x²+0x-16=0 | | w/15+14=13 | | 6×(3t+12)=2t×(3t+12) | | x+1=-x-5 | | 2d+1=-19 | | 7x+6+5x-3=7x+5x+6-3 | | 10u-8u=8 | | w/2+20=19 | | 0.25n+0.3-0.05n=1.7 | | -3x+3=-2x+4 | | 12=20x-3+3x | | 25b^2-120b+619=0 | | 12=20x-3=3x | | 2(x-5)-7=20+x | | k/3–2=1 |