64=(3w+8)w

Simple and best practice solution for 64=(3w+8)w equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 64=(3w+8)w equation:


Simplifying
64 = (3w + 8) * w

Reorder the terms:
64 = (8 + 3w) * w

Reorder the terms for easier multiplication:
64 = w(8 + 3w)
64 = (8 * w + 3w * w)
64 = (8w + 3w2)

Solving
64 = 8w + 3w2

Solving for variable 'w'.

Reorder the terms:
64 + -8w + -3w2 = 8w + -8w + 3w2 + -3w2

Combine like terms: 8w + -8w = 0
64 + -8w + -3w2 = 0 + 3w2 + -3w2
64 + -8w + -3w2 = 3w2 + -3w2

Combine like terms: 3w2 + -3w2 = 0
64 + -8w + -3w2 = 0

Begin completing the square.  Divide all terms by
-3 the coefficient of the squared term: 

Divide each side by '-3'.
-21.33333333 + 2.666666667w + w2 = 0

Move the constant term to the right:

Add '21.33333333' to each side of the equation.
-21.33333333 + 2.666666667w + 21.33333333 + w2 = 0 + 21.33333333

Reorder the terms:
-21.33333333 + 21.33333333 + 2.666666667w + w2 = 0 + 21.33333333

Combine like terms: -21.33333333 + 21.33333333 = 0.00000000
0.00000000 + 2.666666667w + w2 = 0 + 21.33333333
2.666666667w + w2 = 0 + 21.33333333

Combine like terms: 0 + 21.33333333 = 21.33333333
2.666666667w + w2 = 21.33333333

The w term is 2.666666667w.  Take half its coefficient (1.333333334).
Square it (1.777777780) and add it to both sides.

Add '1.777777780' to each side of the equation.
2.666666667w + 1.777777780 + w2 = 21.33333333 + 1.777777780

Reorder the terms:
1.777777780 + 2.666666667w + w2 = 21.33333333 + 1.777777780

Combine like terms: 21.33333333 + 1.777777780 = 23.11111111
1.777777780 + 2.666666667w + w2 = 23.11111111

Factor a perfect square on the left side:
(w + 1.333333334)(w + 1.333333334) = 23.11111111

Calculate the square root of the right side: 4.807401701

Break this problem into two subproblems by setting 
(w + 1.333333334) equal to 4.807401701 and -4.807401701.

Subproblem 1

w + 1.333333334 = 4.807401701 Simplifying w + 1.333333334 = 4.807401701 Reorder the terms: 1.333333334 + w = 4.807401701 Solving 1.333333334 + w = 4.807401701 Solving for variable 'w'. Move all terms containing w to the left, all other terms to the right. Add '-1.333333334' to each side of the equation. 1.333333334 + -1.333333334 + w = 4.807401701 + -1.333333334 Combine like terms: 1.333333334 + -1.333333334 = 0.000000000 0.000000000 + w = 4.807401701 + -1.333333334 w = 4.807401701 + -1.333333334 Combine like terms: 4.807401701 + -1.333333334 = 3.474068367 w = 3.474068367 Simplifying w = 3.474068367

Subproblem 2

w + 1.333333334 = -4.807401701 Simplifying w + 1.333333334 = -4.807401701 Reorder the terms: 1.333333334 + w = -4.807401701 Solving 1.333333334 + w = -4.807401701 Solving for variable 'w'. Move all terms containing w to the left, all other terms to the right. Add '-1.333333334' to each side of the equation. 1.333333334 + -1.333333334 + w = -4.807401701 + -1.333333334 Combine like terms: 1.333333334 + -1.333333334 = 0.000000000 0.000000000 + w = -4.807401701 + -1.333333334 w = -4.807401701 + -1.333333334 Combine like terms: -4.807401701 + -1.333333334 = -6.140735035 w = -6.140735035 Simplifying w = -6.140735035

Solution

The solution to the problem is based on the solutions from the subproblems. w = {3.474068367, -6.140735035}

See similar equations:

| 2.93*10-7= | | 4x+3(x-9)=15 | | 27-17=2(x-9) | | 3a*17=180 | | 5a+3b=17 | | -2(7x-15)=18+2x | | +32x=+45 | | 64=2(3(w+8))+2w | | -7x+4x+15-9x= | | 21a*51=180 | | 3x+(-x-2)=12 | | 2(d+6)=-1 | | 37x+4x-14=14x-9-2x | | 9y+x=147 | | 8b-b=14 | | 6n^2+3= | | 7x-29-21x=3+(12+2x) | | b^2-7bg-30g^2=0 | | 2b-7-5b-3= | | x^4+x^3+x^2+x+1=1 | | 25x^2+110x+40= | | 2z-z=12 | | 4(8x-5)=25 | | 126=-3x | | d-21=-20 | | 10-x=68 | | .5x+5y+10z=100 | | (26x+38)=180 | | 3(-2y)-5y=6(-2y)+y | | dx(-4x-3y)=dy(2x+y) | | t^2-2ty-48y^2=0 | | ln*3*x=10 |

Equations solver categories