64=(3x+1)(x+1)

Simple and best practice solution for 64=(3x+1)(x+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 64=(3x+1)(x+1) equation:


Simplifying
64 = (3x + 1)(x + 1)

Reorder the terms:
64 = (1 + 3x)(x + 1)

Reorder the terms:
64 = (1 + 3x)(1 + x)

Multiply (1 + 3x) * (1 + x)
64 = (1(1 + x) + 3x * (1 + x))
64 = ((1 * 1 + x * 1) + 3x * (1 + x))
64 = ((1 + 1x) + 3x * (1 + x))
64 = (1 + 1x + (1 * 3x + x * 3x))
64 = (1 + 1x + (3x + 3x2))

Combine like terms: 1x + 3x = 4x
64 = (1 + 4x + 3x2)

Solving
64 = 1 + 4x + 3x2

Solving for variable 'x'.

Combine like terms: 64 + -1 = 63
63 + -4x + -3x2 = 1 + 4x + 3x2 + -1 + -4x + -3x2

Reorder the terms:
63 + -4x + -3x2 = 1 + -1 + 4x + -4x + 3x2 + -3x2

Combine like terms: 1 + -1 = 0
63 + -4x + -3x2 = 0 + 4x + -4x + 3x2 + -3x2
63 + -4x + -3x2 = 4x + -4x + 3x2 + -3x2

Combine like terms: 4x + -4x = 0
63 + -4x + -3x2 = 0 + 3x2 + -3x2
63 + -4x + -3x2 = 3x2 + -3x2

Combine like terms: 3x2 + -3x2 = 0
63 + -4x + -3x2 = 0

Begin completing the square.  Divide all terms by
-3 the coefficient of the squared term: 

Divide each side by '-3'.
-21 + 1.333333333x + x2 = 0

Move the constant term to the right:

Add '21' to each side of the equation.
-21 + 1.333333333x + 21 + x2 = 0 + 21

Reorder the terms:
-21 + 21 + 1.333333333x + x2 = 0 + 21

Combine like terms: -21 + 21 = 0
0 + 1.333333333x + x2 = 0 + 21
1.333333333x + x2 = 0 + 21

Combine like terms: 0 + 21 = 21
1.333333333x + x2 = 21

The x term is 1.333333333x.  Take half its coefficient (0.6666666665).
Square it (0.4444444442) and add it to both sides.

Add '0.4444444442' to each side of the equation.
1.333333333x + 0.4444444442 + x2 = 21 + 0.4444444442

Reorder the terms:
0.4444444442 + 1.333333333x + x2 = 21 + 0.4444444442

Combine like terms: 21 + 0.4444444442 = 21.4444444442
0.4444444442 + 1.333333333x + x2 = 21.4444444442

Factor a perfect square on the left side:
(x + 0.6666666665)(x + 0.6666666665) = 21.4444444442

Calculate the square root of the right side: 4.630814663

Break this problem into two subproblems by setting 
(x + 0.6666666665) equal to 4.630814663 and -4.630814663.

Subproblem 1

x + 0.6666666665 = 4.630814663 Simplifying x + 0.6666666665 = 4.630814663 Reorder the terms: 0.6666666665 + x = 4.630814663 Solving 0.6666666665 + x = 4.630814663 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.6666666665' to each side of the equation. 0.6666666665 + -0.6666666665 + x = 4.630814663 + -0.6666666665 Combine like terms: 0.6666666665 + -0.6666666665 = 0.0000000000 0.0000000000 + x = 4.630814663 + -0.6666666665 x = 4.630814663 + -0.6666666665 Combine like terms: 4.630814663 + -0.6666666665 = 3.9641479965 x = 3.9641479965 Simplifying x = 3.9641479965

Subproblem 2

x + 0.6666666665 = -4.630814663 Simplifying x + 0.6666666665 = -4.630814663 Reorder the terms: 0.6666666665 + x = -4.630814663 Solving 0.6666666665 + x = -4.630814663 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.6666666665' to each side of the equation. 0.6666666665 + -0.6666666665 + x = -4.630814663 + -0.6666666665 Combine like terms: 0.6666666665 + -0.6666666665 = 0.0000000000 0.0000000000 + x = -4.630814663 + -0.6666666665 x = -4.630814663 + -0.6666666665 Combine like terms: -4.630814663 + -0.6666666665 = -5.2974813295 x = -5.2974813295 Simplifying x = -5.2974813295

Solution

The solution to the problem is based on the solutions from the subproblems. x = {3.9641479965, -5.2974813295}

See similar equations:

| 4(x-1)+y=3(y+1) | | x^2(x+5)+7(x+5)= | | 14x^4-21x^3+35x^2= | | 7x+5y=123 | | a^2+8ag+12g^2= | | 2a^2+4a-24= | | x^2+12x-164=0 | | 6(x-2)+7=43 | | [a+(3b+1)]= | | 14x^2-13x=-3 | | 3v(7v^2-22v+3)= | | 1+3=214 | | 1+3=309 | | -12x+174-360=0 | | sin(2x)=0.72 | | 3x^2+3y^2-4xy+10x-10y+10=0 | | x=-a/ax | | (5)(w+4)=-(5)(2w+8)+1 | | (8+z)(4z-5)=0 | | 25x^2-72x+80=0 | | x^3-3x-123=0 | | (x-2)*180=(156*x) | | 2x-22+22=84+22 | | x=-0.62-(-0.741) | | x^2+2xy+3x+2x+3xy=0 | | 53y+54=6b+(-2) | | 1+5x+4x^3=0 | | 2x+4=5x^2 | | (-72)(-q)= | | 70+57=635 | | 9*x=240 | | 7c^2-2c+3=7(c^2+c) |

Equations solver categories