If it's not what You are looking for type in the equation solver your own equation and let us solve it.
64=16t^2-80t
We move all terms to the left:
64-(16t^2-80t)=0
We get rid of parentheses
-16t^2+80t+64=0
a = -16; b = 80; c = +64;
Δ = b2-4ac
Δ = 802-4·(-16)·64
Δ = 10496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10496}=\sqrt{256*41}=\sqrt{256}*\sqrt{41}=16\sqrt{41}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-16\sqrt{41}}{2*-16}=\frac{-80-16\sqrt{41}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+16\sqrt{41}}{2*-16}=\frac{-80+16\sqrt{41}}{-32} $
| 10x+6=18+6x | | 25y=15y+75= | | 4(3x-2)=20+8x | | 3(8x+2)=4(6x-10 | | -37-8a=3(-7-4a) | | 10(x-2)=-20= | | -(x+8)=-6-2x | | m+7=3+m+4= | | 1300-25n=300 | | 44()=5d | | 4x+2x-4=2x+8 | | 1+8x=-8x+7(3+3x) | | 10m=10-5(m-)= | | x/7=9/6 | | 120()=9b | | 2x+6−4=20 | | -3(5p+4)=-102 | | 5y-y=-6y | | 5x-4=2(x-2)+3 | | -7(6x-6)=-210 | | 2x+8x+3=10x+5 | | m+2m-6=-12+2m= | | 2x-4=2(x-1)+5 | | -6(4x-5)=-162 | | 6(-6-6p)-7p=136 | | |5|-7=x | | y^2-4.2y+4.41=(y- | | 8(-3p-7)=136 | | 196=93-x | | 3a-1=6a-1 | | -7+4=3x-6 | | -5(1+8b)=155 |