If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 64 = 2(3w + 8) * 2w Reorder the terms: 64 = 2(8 + 3w) * 2w Reorder the terms for easier multiplication: 64 = 2 * 2w(8 + 3w) Multiply 2 * 2 64 = 4w(8 + 3w) 64 = (8 * 4w + 3w * 4w) 64 = (32w + 12w2) Solving 64 = 32w + 12w2 Solving for variable 'w'. Reorder the terms: 64 + -32w + -12w2 = 32w + -32w + 12w2 + -12w2 Combine like terms: 32w + -32w = 0 64 + -32w + -12w2 = 0 + 12w2 + -12w2 64 + -32w + -12w2 = 12w2 + -12w2 Combine like terms: 12w2 + -12w2 = 0 64 + -32w + -12w2 = 0 Factor out the Greatest Common Factor (GCF), '4'. 4(16 + -8w + -3w2) = 0 Factor a trinomial. 4((4 + -3w)(4 + w)) = 0 Ignore the factor 4.Subproblem 1
Set the factor '(4 + -3w)' equal to zero and attempt to solve: Simplifying 4 + -3w = 0 Solving 4 + -3w = 0 Move all terms containing w to the left, all other terms to the right. Add '-4' to each side of the equation. 4 + -4 + -3w = 0 + -4 Combine like terms: 4 + -4 = 0 0 + -3w = 0 + -4 -3w = 0 + -4 Combine like terms: 0 + -4 = -4 -3w = -4 Divide each side by '-3'. w = 1.333333333 Simplifying w = 1.333333333Subproblem 2
Set the factor '(4 + w)' equal to zero and attempt to solve: Simplifying 4 + w = 0 Solving 4 + w = 0 Move all terms containing w to the left, all other terms to the right. Add '-4' to each side of the equation. 4 + -4 + w = 0 + -4 Combine like terms: 4 + -4 = 0 0 + w = 0 + -4 w = 0 + -4 Combine like terms: 0 + -4 = -4 w = -4 Simplifying w = -4Solution
w = {1.333333333, -4}
| 3x/6=9 | | -6v+19=13 | | 2x+5-x=13 | | 32=-4-7(3p-2) | | 64m^2-80m+25= | | m/18=5/90 | | 2x-4x-11=-2x+6-11 | | 9x+1=9x-x | | 76=f | | 7(-5+4m)-5m=127 | | 9Y+10=-36 | | 2y^2*3y^2*4y^5= | | q-q-2q= | | 73=f | | (2x-38)=148 | | 9/2=x/16 | | Y/-10=10 | | 2+2x+5= | | x-17=y+17 | | x^3=16x-21 | | 7-3y=7y-3 | | (((2x^3)^3)/((-3x^5)^2)) | | -6=-3(m-6) | | (2x)(x)=9x+18 | | 180=(4w-6)+2w | | -2(8n+6)-8n=156 | | 2x+9=9x+8 | | 2x+1=ax+b | | 16x-21-x^3=0 | | -36y=12x | | 1+2x+5= | | 100(0.1x+0.03(7-x))=(0.05(7)) |