If it's not what You are looking for type in the equation solver your own equation and let us solve it.
64t^2+-84t+27=0
We add all the numbers together, and all the variables
64t^2-84t=0
a = 64; b = -84; c = 0;
Δ = b2-4ac
Δ = -842-4·64·0
Δ = 7056
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{7056}=84$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-84)-84}{2*64}=\frac{0}{128} =0 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-84)+84}{2*64}=\frac{168}{128} =1+5/16 $
| -2m=4m+18 | | 5+2c=8+3c | | X(3)+x(3)=2 | | 2(x)=32 | | 1/2(x-13)=72 | | -x2+6x–8=-2x2+8x | | -3(8x-2)=174 | | -3x-10=32* | | (7x+72)/8=X | | Y=-3/4x12 | | –x–2x–4=11 | | 4^3×=8^x+1 | | (2x-1)(3x+2)=3(x+2) | | 2y+20=50-y | | 7(k-5)=3k-5 | | 18^2=a^2+a^2 | | 3x²=20 | | 10·x+8=48 | | -1.2=6,3+v/3 | | -70y=0 | | 4/12=a/12 | | 18-3y=y | | x=5+0.01 | | 5x–4–x=2x-1 | | 3g+7=6 | | 6c-13=12 | | 5z+6=66 | | 7r+10=52 | | |2x+40|=28 | | 7r+10=15 | | 5r+3=11 | | 6l+9=27 |