If it's not what You are looking for type in the equation solver your own equation and let us solve it.
64x^2+129x+64=0
a = 64; b = 129; c = +64;
Δ = b2-4ac
Δ = 1292-4·64·64
Δ = 257
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(129)-\sqrt{257}}{2*64}=\frac{-129-\sqrt{257}}{128} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(129)+\sqrt{257}}{2*64}=\frac{-129+\sqrt{257}}{128} $
| -6(-10n+3)=-9(9-7n) | | 1/4x-3=1/8+2 | | -10m=-5m+10 | | -8-7y=-6y | | -6(a+4)=-16-2a | | 3x-5(x+1)-3=2x | | 3750+70b=120b | | 17+m-63=-19 | | a3=729 | | 214=-6(-6n-4)+2n | | 6^2t-4=4 | | -19=-63m+17 | | 9=81/3x | | 13x-4=11x+10-8 | | 8(-6r+4)=-256 | | 3x+5x-12=7x | | 4200+45b=115b | | 48=2l+6 | | 12=32t-16t^2 | | 180=83-2x | | 30×7+4x=64 | | 19b+5b-22=16 | | 48x^2-238x+171=3-x^2 | | k/9-2=-9 | | 10y+14+8y+16=165+3y | | 8(7+7x)=336 | | 30*7+4x=64 | | 2x-3=x^2+6x+6 | | 80=(-10n) | | -5r+-8=51 | | 2(3x-0.5)+2(5x-2)=2(2x+3)+10x-5 | | 20u-18u=16 |