If it's not what You are looking for type in the equation solver your own equation and let us solve it.
64x^2-16x=0
a = 64; b = -16; c = 0;
Δ = b2-4ac
Δ = -162-4·64·0
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-16}{2*64}=\frac{0}{128} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+16}{2*64}=\frac{32}{128} =1/4 $
| 6x-2(x-3)=8 | | 7(y+7)-3y=21 | | 0.25(4x-5)=1-0.5x | | 7+(y+7)-3y=21 | | 2x-3x=12+18 | | (3/2v+6)+1=-(4/v-3) | | 44-2x=5x, | | x÷3-x÷6=30 | | 3(x+7)/2=18 | | 1.2x-4=0.3x+2.3 | | x-2(x-3)=5x-4 | | X-13=4x+8 | | 2x-x-3=8 | | x÷4-x÷2=-2 | | 2x(x-3)-7=18-5(x-4) | | 2-3x=12x-13 | | 4a=10=-a+15 | | 1-(x-3)=18 | | 2x-x=13-2 | | 8q−4q=12 | | 156=2(1/3w) | | 262=58-u | | 2x+4x=3000 | | 14x-12=13x-11 | | 6x+2(-4x)=52 | | 150=25x=55x | | 10-8(4x-3)+1=2(x+1)=(3x+1) | | 15^7x=8^-x+6 | | Y=(-3x^2)+3x+2 | | 25x+10=15x+4 | | 8+3e=e=2 | | 12x-15=3(2x-3) |