If it's not what You are looking for type in the equation solver your own equation and let us solve it.
64x^2-49=0
a = 64; b = 0; c = -49;
Δ = b2-4ac
Δ = 02-4·64·(-49)
Δ = 12544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{12544}=112$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-112}{2*64}=\frac{-112}{128} =-7/8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+112}{2*64}=\frac{112}{128} =7/8 $
| 9m+4m=3 | | 6+7x=2-10 | | -x+49=87 | | -360x(x+1=0 | | 4b-16=4b/3=8 | | -16=-5a-3a | | 5b/3+6=6b-98 | | 6x2+47x-8=0 | | 1/2(x+256)=180 | | 2x+2x+16=40 | | 12−5y2=4y | | 12(x+256)=180 | | 6n-156=15n/8+9 | | -18v=-368 | | 26−4s=9s. | | 7(-6-8x-9x)+4(9x-2)=33 | | 2x-2x+16=40 | | 0=n+8n | | 8(y-5)=1/2(6y-10) | | 3(-x)=5(2x+7) | | x+x+1.14+x+0.20=10.66 | | 6a/5+4=6a-188 | | 20=6b+4b | | 16x/9=5x-203 | | 2x+2x-16=40 | | .=56x2 | | x+23461+x=39143 | | -10=1+x-8 | | 2226=21(p+40) | | 15x/8=6x-198 | | -16x^2+40x+16=0 | | 84+x+2x=180 |