If it's not what You are looking for type in the equation solver your own equation and let us solve it.
64x^2=121
We move all terms to the left:
64x^2-(121)=0
a = 64; b = 0; c = -121;
Δ = b2-4ac
Δ = 02-4·64·(-121)
Δ = 30976
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{30976}=176$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-176}{2*64}=\frac{-176}{128} =-1+3/8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+176}{2*64}=\frac{176}{128} =1+3/8 $
| 7x+12=12x-12 | | 1/5(x)=(90-x) | | 4t-18=t+5 | | 4(3x-5)=2(7x+12) | | 6d-3d-d=16 | | 12s-12s+s-s+2s=10 | | 4x+31=7x-8 | | 8v-4v=20 | | (-14c)-(-12c)+(-5c)+(-19c)-(-20c)=6 | | -16b+14b+-b+-12b+b=14 | | 9x+8=21 | | 1/4x+2=-5/8x | | -6v+2(v-3)=-22 | | 2j-j+2j+4j=7 | | 5g+8g+(20g)-g=(-16) | | Y=40x^2-10 | | n+7.5=15 | | (2*x+3)-(7*x+4)=0 | | -6u+3(u+2)=3 | | 7d-7d+3d-2d=16 | | 18c+(-14c)-(-11c)=15 | | 5.8g+8=1.8g+20 | | (2408+100.25x)=250.75x | | (11x-2)^2=50 | | 30=7y-8y | | f/28=22 | | 10x+17=24+10x | | v+-8v=14 | | 13h-2h-4h=14 | | 1.125+x=6.25 | | 17u-11u=12 | | 5x+2x-7x+x+3x=16 |