If it's not what You are looking for type in the equation solver your own equation and let us solve it.
65=10(3x+1)+x(9-3x+1)
We move all terms to the left:
65-(10(3x+1)+x(9-3x+1))=0
We add all the numbers together, and all the variables
-(10(3x+1)+x(-3x+10))+65=0
We calculate terms in parentheses: -(10(3x+1)+x(-3x+10)), so:We get rid of parentheses
10(3x+1)+x(-3x+10)
We multiply parentheses
-3x^2+30x+10x+10
We add all the numbers together, and all the variables
-3x^2+40x+10
Back to the equation:
-(-3x^2+40x+10)
3x^2-40x-10+65=0
We add all the numbers together, and all the variables
3x^2-40x+55=0
a = 3; b = -40; c = +55;
Δ = b2-4ac
Δ = -402-4·3·55
Δ = 940
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{940}=\sqrt{4*235}=\sqrt{4}*\sqrt{235}=2\sqrt{235}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-2\sqrt{235}}{2*3}=\frac{40-2\sqrt{235}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+2\sqrt{235}}{2*3}=\frac{40+2\sqrt{235}}{6} $
| (10-x)(3x+1)+9x=65 | | 3x+6/6=-3 | | X+1/2=x+3 | | X+4/2x-2=-2 | | 10(2x-3)^4=10 | | 5x+x+18=180 | | 47+64+x=360 | | 129+72+x=360 | | 84+51+x=180 | | 110+40+x=180 | | 110+40+x=360 | | 2(n+4)=5 | | 5/x-4=-2/x+3 | | 31+31+x=180 | | 99+99+x=180 | | 2(2n+5)=6 | | 16=4+3(t-2) | | 0.99^x=0.01 | | X-x/40=1 | | x-(x/40)+65/40-x/40=1 | | 45+132+x=180 | | 9d+2=3d+14 | | 55+132+x=180 | | 45+132+x=1`80 | | 78+64+x=180 | | 9+t/2=2t | | 9x+84=156 | | -4(-7w-3)=124 | | 90-5q=8+q | | 2.5(9.6r-7.1)=68.4 | | (5x-8)=(4x-5 | | 2p=16+17p |