66=4(2x-3)+2(x+4)x=

Simple and best practice solution for 66=4(2x-3)+2(x+4)x= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 66=4(2x-3)+2(x+4)x= equation:



66=4(2x-3)+2(x+4)x=
We move all terms to the left:
66-(4(2x-3)+2(x+4)x)=0
We calculate terms in parentheses: -(4(2x-3)+2(x+4)x), so:
4(2x-3)+2(x+4)x
We multiply parentheses
2x^2+8x+8x-12
We add all the numbers together, and all the variables
2x^2+16x-12
Back to the equation:
-(2x^2+16x-12)
We get rid of parentheses
-2x^2-16x+12+66=0
We add all the numbers together, and all the variables
-2x^2-16x+78=0
a = -2; b = -16; c = +78;
Δ = b2-4ac
Δ = -162-4·(-2)·78
Δ = 880
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{880}=\sqrt{16*55}=\sqrt{16}*\sqrt{55}=4\sqrt{55}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4\sqrt{55}}{2*-2}=\frac{16-4\sqrt{55}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4\sqrt{55}}{2*-2}=\frac{16+4\sqrt{55}}{-4} $

See similar equations:

| -3x+19-5x=91x= | | 4x+2^(2x+1)=48 | | 3(a+2)-(a-1)=17a= | | 2(x+3)-5(x-1)=32x= | | 5x-2(6-5x)=18x= | | 2x-5x+13+9x=67x= | | -5x+17-8x=56x= | | 5(2x-4)=-2(10-5x) | | 220+0.25x=420 | | 3w-15w-16=52 | | (3x-5)=-15(2x+30) | | 11(y+5)=88 | | 9x^2+144+4608=0 | | 190+0.15x=275 | | x^2-144-4608=0 | | 9x^2-144+4608=0 | | w-2.7=7.4 | | 9w=6130 | | x+5=3x+7=180 | | 3m-4-5m=10 | | 170+0.25x=315 | | 13-2x=9x=3 | | 2x-6+x=5x-8 | | p^-6/4=3 | | 230+15x=314 | | 4x-21=21x= | | -2.5x+6.8=8.6-(2.3x+5.1) | | 12(4+y)+3y=33 | | 7x+13/2=9 | | 6w+4(w-4)=-26 | | -7+4m=4(m-1)-3- | | -4(2b-8)+16=-16 |

Equations solver categories