675=(x+6)(x-4)

Simple and best practice solution for 675=(x+6)(x-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 675=(x+6)(x-4) equation:



675=(x+6)(x-4)
We move all terms to the left:
675-((x+6)(x-4))=0
We multiply parentheses ..
-((+x^2-4x+6x-24))+675=0
We calculate terms in parentheses: -((+x^2-4x+6x-24)), so:
(+x^2-4x+6x-24)
We get rid of parentheses
x^2-4x+6x-24
We add all the numbers together, and all the variables
x^2+2x-24
Back to the equation:
-(x^2+2x-24)
We get rid of parentheses
-x^2-2x+24+675=0
We add all the numbers together, and all the variables
-1x^2-2x+699=0
a = -1; b = -2; c = +699;
Δ = b2-4ac
Δ = -22-4·(-1)·699
Δ = 2800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2800}=\sqrt{400*7}=\sqrt{400}*\sqrt{7}=20\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-20\sqrt{7}}{2*-1}=\frac{2-20\sqrt{7}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+20\sqrt{7}}{2*-1}=\frac{2+20\sqrt{7}}{-2} $

See similar equations:

| 2x-46+80=180 | | v-3=14 | | 2x¨7=250 | | 11x11=77 | | 4c-4=3c+6 | | 1÷4(2x-3)1÷3(x-2)=4 | | 12=18-1,2y | | B×4=28b= | | (4x)(4x)(4x)-(x)(x)(x)(x)=31 | | y²-0.8=0.4y | | -5x-3(-7x-22)=-30 | | -5x-3(-7-22)=-30 | | 192=7x-2(-5-11) | | -3=x2+x-4 | | -2x-7(-x+10)=-15 | | 7x+6(x-8)=43 | | 12-7q=40 | | 7x–9=26x= | | 5l+11=41 | | 131+49+3y+1=180 | | e-12=-1 | | 0.5(7x-6)=4 | | (2x-3)/(4)=3x | | 4-3n=-20 | | 8f+4=100 | | x/2+10=5x/6+2x/4 | | 7v-8=62 | | 20=x2 | | 7n-6=4n+27 | | 1/2(2-x)=9 | | 24a-22=-4(- | | 45-7x=10B |

Equations solver categories