If it's not what You are looking for type in the equation solver your own equation and let us solve it.
675x^2+80x=2310
We move all terms to the left:
675x^2+80x-(2310)=0
a = 675; b = 80; c = -2310;
Δ = b2-4ac
Δ = 802-4·675·(-2310)
Δ = 6243400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6243400}=\sqrt{100*62434}=\sqrt{100}*\sqrt{62434}=10\sqrt{62434}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-10\sqrt{62434}}{2*675}=\frac{-80-10\sqrt{62434}}{1350} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+10\sqrt{62434}}{2*675}=\frac{-80+10\sqrt{62434}}{1350} $
| 3.50+25x=7.50+17x | | 28=7/8x42 | | 64=7x+1 | | (2x-15)+x=165 | | C=1.21x | | -2p=(4)/11 | | 1/4x+6=28 | | 4x+1=9+4 | | w+13=11w−7 | | 2.00x=26+1.00 | | 7x-22=6x+45 | | 2x+30+x=330 | | 6-2x=9x+2 | | 5+5(x-5)=15 | | 9k+2=164 | | 5y+2=1/2(10y+4 | | 1.25m+0.75=10.25 | | y-5=-(-5-y) | | 1.25m+0.75=110.35 | | 5p+10=8p+15p+10=8p+1. | | -9x+15=-22-4(x+12 | | 4n+2=2n-6 | | -3(1-4x)+4(2x-3)=-1 | | 32m=-59+21m | | 5(x)=55 | | -3(-4-6)+4(-1-5w)=0 | | 1/2(x-3)+8=24 | | 14y-24=2y+12 | | 2.4x+5.6.7x+5.6=-11.2 | | 4=5x=1 | | 0.1x+10.3=x-5.99 | | f=9/5(10+32) |