If it's not what You are looking for type in the equation solver your own equation and let us solve it.
67x^2=134
We move all terms to the left:
67x^2-(134)=0
a = 67; b = 0; c = -134;
Δ = b2-4ac
Δ = 02-4·67·(-134)
Δ = 35912
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{35912}=\sqrt{17956*2}=\sqrt{17956}*\sqrt{2}=134\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-134\sqrt{2}}{2*67}=\frac{0-134\sqrt{2}}{134} =-\frac{134\sqrt{2}}{134} =-\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+134\sqrt{2}}{2*67}=\frac{0+134\sqrt{2}}{134} =\frac{134\sqrt{2}}{134} =\sqrt{2} $
| 15+12f=9f | | 4(x-10)-7=17x-164 | | 9w-3=-48 | | 17.3p=-13.59+16.4p | | -5.3s=47.7 | | 5x+4=3x×10 | | 0x+500=0x+0 | | 64+-13x=25 | | -12.9t+16.07=-15.7t-9.13 | | 25=b+8 | | 6x-13=-5+7x | | 25x+500=25x+450 | | 7+s=10 | | 65+3x=86 | | -18-20+9z=16z+4 | | 11y+19=-20+8y | | -8m=-10m-16 | | (5-n)(5-n)=0 | | 2=y-12 | | 18.84-7.17+9.9m=6.2m-18.3 | | 125r+6.75=31.75 | | 4n+6–2n=2n+6 | | -15v-40=23-8v | | -16+9j=16-5j+12j | | 2x–1=90 | | 6.C=36xR=76x | | 4c-20=20-7c+15 | | 2x+48=10x | | 4.5q=5.8q+11.5 | | 0.8x=28 | | -10=-3.4+d | | -2d+20=-5d-19 |