684=(2x-4)(x-4)

Simple and best practice solution for 684=(2x-4)(x-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 684=(2x-4)(x-4) equation:


Simplifying
684 = (2x + -4)(x + -4)

Reorder the terms:
684 = (-4 + 2x)(x + -4)

Reorder the terms:
684 = (-4 + 2x)(-4 + x)

Multiply (-4 + 2x) * (-4 + x)
684 = (-4(-4 + x) + 2x * (-4 + x))
684 = ((-4 * -4 + x * -4) + 2x * (-4 + x))
684 = ((16 + -4x) + 2x * (-4 + x))
684 = (16 + -4x + (-4 * 2x + x * 2x))
684 = (16 + -4x + (-8x + 2x2))

Combine like terms: -4x + -8x = -12x
684 = (16 + -12x + 2x2)

Solving
684 = 16 + -12x + 2x2

Solving for variable 'x'.

Combine like terms: 684 + -16 = 668
668 + 12x + -2x2 = 16 + -12x + 2x2 + -16 + 12x + -2x2

Reorder the terms:
668 + 12x + -2x2 = 16 + -16 + -12x + 12x + 2x2 + -2x2

Combine like terms: 16 + -16 = 0
668 + 12x + -2x2 = 0 + -12x + 12x + 2x2 + -2x2
668 + 12x + -2x2 = -12x + 12x + 2x2 + -2x2

Combine like terms: -12x + 12x = 0
668 + 12x + -2x2 = 0 + 2x2 + -2x2
668 + 12x + -2x2 = 2x2 + -2x2

Combine like terms: 2x2 + -2x2 = 0
668 + 12x + -2x2 = 0

Factor out the Greatest Common Factor (GCF), '2'.
2(334 + 6x + -1x2) = 0

Ignore the factor 2.

Subproblem 1

Set the factor '(334 + 6x + -1x2)' equal to zero and attempt to solve: Simplifying 334 + 6x + -1x2 = 0 Solving 334 + 6x + -1x2 = 0 Begin completing the square. Divide all terms by -1 the coefficient of the squared term: Divide each side by '-1'. -334 + -6x + x2 = 0 Move the constant term to the right: Add '334' to each side of the equation. -334 + -6x + 334 + x2 = 0 + 334 Reorder the terms: -334 + 334 + -6x + x2 = 0 + 334 Combine like terms: -334 + 334 = 0 0 + -6x + x2 = 0 + 334 -6x + x2 = 0 + 334 Combine like terms: 0 + 334 = 334 -6x + x2 = 334 The x term is -6x. Take half its coefficient (-3). Square it (9) and add it to both sides. Add '9' to each side of the equation. -6x + 9 + x2 = 334 + 9 Reorder the terms: 9 + -6x + x2 = 334 + 9 Combine like terms: 334 + 9 = 343 9 + -6x + x2 = 343 Factor a perfect square on the left side: (x + -3)(x + -3) = 343 Calculate the square root of the right side: 18.520259177 Break this problem into two subproblems by setting (x + -3) equal to 18.520259177 and -18.520259177.

Subproblem 1

x + -3 = 18.520259177 Simplifying x + -3 = 18.520259177 Reorder the terms: -3 + x = 18.520259177 Solving -3 + x = 18.520259177 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '3' to each side of the equation. -3 + 3 + x = 18.520259177 + 3 Combine like terms: -3 + 3 = 0 0 + x = 18.520259177 + 3 x = 18.520259177 + 3 Combine like terms: 18.520259177 + 3 = 21.520259177 x = 21.520259177 Simplifying x = 21.520259177

Subproblem 2

x + -3 = -18.520259177 Simplifying x + -3 = -18.520259177 Reorder the terms: -3 + x = -18.520259177 Solving -3 + x = -18.520259177 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '3' to each side of the equation. -3 + 3 + x = -18.520259177 + 3 Combine like terms: -3 + 3 = 0 0 + x = -18.520259177 + 3 x = -18.520259177 + 3 Combine like terms: -18.520259177 + 3 = -15.520259177 x = -15.520259177 Simplifying x = -15.520259177

Solution

The solution to the problem is based on the solutions from the subproblems. x = {21.520259177, -15.520259177}

Solution

x = {21.520259177, -15.520259177}

See similar equations:

| 3(0)-2(0)=-8 | | 13T-40=9T | | (-1+3)7=14 | | m^2-12m=-27 | | 17p+8=110 | | -4/7-1/9= | | 5U-50=U+22 | | 3B-15=B+23 | | X^4-7x^3+3x^2+31x+20=0 | | -x(14-3x)=12 | | X^3+4x^2+5=0 | | 16x^2+x+385= | | -x^3-9x=0 | | g*4=25-(3*4) | | -3x+5y=-7.5 | | g*4=25-(3)(4) | | 3x^2=10+13x | | -6+4=x+8 | | 18=10-2m | | -7-2x=9 | | 4x^2-12=2x | | 3(x-3)=-7x+51 | | 100+40=x | | 0=10x-7+10x | | 3-10x-8x(x)=0 | | x-(-18)=-20 | | 1800=6x | | 7-6x=12-4x-2x | | 4(m-10)=-2m+14 | | 6x-6y=7 | | y-5x-12x=-1 | | 2700=9x |

Equations solver categories