68=(2x+6)(2x+2)

Simple and best practice solution for 68=(2x+6)(2x+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 68=(2x+6)(2x+2) equation:



68=(2x+6)(2x+2)
We move all terms to the left:
68-((2x+6)(2x+2))=0
We multiply parentheses ..
-((+4x^2+4x+12x+12))+68=0
We calculate terms in parentheses: -((+4x^2+4x+12x+12)), so:
(+4x^2+4x+12x+12)
We get rid of parentheses
4x^2+4x+12x+12
We add all the numbers together, and all the variables
4x^2+16x+12
Back to the equation:
-(4x^2+16x+12)
We get rid of parentheses
-4x^2-16x-12+68=0
We add all the numbers together, and all the variables
-4x^2-16x+56=0
a = -4; b = -16; c = +56;
Δ = b2-4ac
Δ = -162-4·(-4)·56
Δ = 1152
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1152}=\sqrt{576*2}=\sqrt{576}*\sqrt{2}=24\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-24\sqrt{2}}{2*-4}=\frac{16-24\sqrt{2}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+24\sqrt{2}}{2*-4}=\frac{16+24\sqrt{2}}{-8} $

See similar equations:

| -90=3(x-15) | | 3(20-3y)-5y=-38 | | 5=1/2(x+20) | | 62-n=-8 | | 2x+3/4+x-1/6=x+4 | | 60=26x+4=15x+10 | | -66/22=k | | 60=26x+4-15x+10 | | 4+6x+4x=74 | | 26x+4-15x+10=60 | | 99-y=168 | | 12y+3=7(y+1) | | 26x+4+15x+10=60 | | {1}{4}(12-4x)=3-x | | 4c(c+5)-2c=14 | | 4x2*3x2=40 | | -9=-10+n/6 | | 4w+8+2w=38 | | 23=30x | | 110=5x+10+4x-8 | | 0.5x-0.8+19=1 | | 2x+12/x=1 | | 9x=0.5(12x-24) | | 4=3n−8 | | m/4+2=17 | | 18b-5=3(6b-2) | | 5(8n+2)=10-n | | 11+9q=14+q | | 150+2w=195=1w | | 0.5(6x+4)=15 | | 120=x+10+7x+14 | | 0.5x-0.8x+19=1 |

Equations solver categories