If it's not what You are looking for type in the equation solver your own equation and let us solve it.
68q^2+28q=0
a = 68; b = 28; c = 0;
Δ = b2-4ac
Δ = 282-4·68·0
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-28}{2*68}=\frac{-56}{136} =-7/17 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+28}{2*68}=\frac{0}{136} =0 $
| 68q^2+28q=0 | | 5x1/2=N | | 3g+4=9g+3 | | 2x+x=20000 | | 12/15=4n | | -2a•8=-4 | | 5x+10,x=-6 | | 3n=-471n+7 | | A•2+b•6=60 | | (2✓3)^x=144 | | 8x-4-18-6x=3x | | 18/60=x/70 | | 18/60=x/80 | | m=3(-82) | | 4(3x+4)-5(2x+6)=0 | | 3*y+7=2*y+3 | | 4,5*y-8=-14+2,5*y | | 3x2+7=5 | | 4(2x-2)+5=21 | | 6(x−65)=19 | | -3x+15=135 | | x/6-8=72 | | 4x^2-27x-49=0 | | 4x+2-3x+3=0 | | -5x=2x+16 | | 4x-40=10-x | | x2+4=x—2 x= | | 10t+4=47 | | 12(x+5=24 | | 11x+21=2x+165 | | 6+49x=28+9 | | 8)x-6)=-24 |