6=(x-3)(2x-4)

Simple and best practice solution for 6=(x-3)(2x-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6=(x-3)(2x-4) equation:



6=(x-3)(2x-4)
We move all terms to the left:
6-((x-3)(2x-4))=0
We multiply parentheses ..
-((+2x^2-4x-6x+12))+6=0
We calculate terms in parentheses: -((+2x^2-4x-6x+12)), so:
(+2x^2-4x-6x+12)
We get rid of parentheses
2x^2-4x-6x+12
We add all the numbers together, and all the variables
2x^2-10x+12
Back to the equation:
-(2x^2-10x+12)
We get rid of parentheses
-2x^2+10x-12+6=0
We add all the numbers together, and all the variables
-2x^2+10x-6=0
a = -2; b = 10; c = -6;
Δ = b2-4ac
Δ = 102-4·(-2)·(-6)
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{13}}{2*-2}=\frac{-10-2\sqrt{13}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{13}}{2*-2}=\frac{-10+2\sqrt{13}}{-4} $

See similar equations:

| 6x4=(3x4)+(3x4) | | 2(5x+3)-1=25 | | 3h-1.99=55.99 | | 2(x+2)+3x=2(x+1)+10 | | 12=18-3n | | 5x+12=-35 | | 5a−5=7+a | | 2(2x+2)+3x=2(x+1)+10 | | 5.8=n-0.35= | | 2(2x+2)+3x=2(x+1)10 | | 3h=55.99 | | N-6=2+5n | | 3h=5.99 | | x+9+2x+6=18 | | 108=-4(-5n+7) | | 32.4=x+12.6 | | 4c=5c-28 | | 7n+2=93 | | Y=6x^2+72x+192 | | 1/2(a-10)=10 | | 1/8+x=5/4 | | 3+h/1.99=55.99 | | Y-4=1/2(x+4) | | 6x-4=51+x | | 126=-7n-(-7) | | 2x^2-15x+14=14 | | 10^8x=76 | | -4=15+m | | 16x+10(x-30)=100 | | 6x+2x+2=3x+7 | | 44g=121 | | -7x+11=-7x+35 |

Equations solver categories