6=90-p2/10

Simple and best practice solution for 6=90-p2/10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6=90-p2/10 equation:



6=90-p2/10
We move all terms to the left:
6-(90-p2/10)=0
We add all the numbers together, and all the variables
-(-p2/10+90)+6=0
We get rid of parentheses
p2/10-90+6=0
We multiply all the terms by the denominator
p2-90*10+6*10=0
We add all the numbers together, and all the variables
p^2-840=0
a = 1; b = 0; c = -840;
Δ = b2-4ac
Δ = 02-4·1·(-840)
Δ = 3360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3360}=\sqrt{16*210}=\sqrt{16}*\sqrt{210}=4\sqrt{210}$
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{210}}{2*1}=\frac{0-4\sqrt{210}}{2} =-\frac{4\sqrt{210}}{2} =-2\sqrt{210} $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{210}}{2*1}=\frac{0+4\sqrt{210}}{2} =\frac{4\sqrt{210}}{2} =2\sqrt{210} $

See similar equations:

| 8(a+2)=6a+30 | | 11n-19=(2n+5) | | 7+8y=-9 | | 4x+9=4x=-10 | | 8a+16=6a+30 | | 5/x+7=11 | | 7d-19=-1+6d | | -(-2z+1)=26 | | 58,454+n=58,454 | | 7x-3=6x+17, | | 3/2a=2/3 | | O.5t=0.54 | | 8=-6+(-w/4) | | 6d=3d+-18 | | 155=2(x-9) | | -12a+2=-5a+25+6 | | 1/2(6x-6)=8-5x | | b-7=b+5 | | .18m+36=60 | | 62/100=1250/x | | 15g-4=56 | | 18m+36=60 | | 9x+4+15x=180 | | 12w-15+9=-9 | | 8x+7/6+3−2x/4−5x−2/2=32 | | 22x+70=18x-95 | | 3x+9-5x=-6x+9 | | x/26=5/3/21 | | 7w-3=7w+5 | | m/5-6=6 | | 2(2x+1)=2+4x | | 4m+48=169 |

Equations solver categories