If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6X^2-19X+15=0
a = 6; b = -19; c = +15;
Δ = b2-4ac
Δ = -192-4·6·15
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-1}{2*6}=\frac{18}{12} =1+1/2 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+1}{2*6}=\frac{20}{12} =1+2/3 $
| 3x+60=x+80 | | 12+2x(18-14)2=0 | | 82x+10=70x+7 | | 2e^2=18 | | 17x=13x= | | 0.75+s=0.6 | | +7(h+3)+4=-3 | | (5x12)/3)+30=-50 | | 4a+4=3.75a | | 2(x-4)=5x-10-3x | | -18+12x=4-5x-6x-4x+3x+2 | | 8.8x+83.45=-11.2x+82.35 | | 5(6z-1)-2(z+9)=24(z+1) | | 2(3x-1)=2(x+9)-4x | | 3850=6550-c | | 14m^2+11m-15=0 | | 14m^2+11m–15=0 | | -7-x/33=-6 | | x=(1/3)*3.14*(4^2)*6 | | 10w+10w=200 | | 0=a(16)-4 | | -4(3-4x)-28x-1)=12x | | X/4=11+(4x2) | | x2−12x=28 | | 2x(10-x)=4 | | 1/30=x/1 | | 24x+28=2 | | 10+19=x2 | | 3-4*7+4=x | | 6x+28=15 | | M=m4-2m+1 | | 6=w-2/5+9w-6/2= |