If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6a^2+17a+12=0
a = 6; b = 17; c = +12;
Δ = b2-4ac
Δ = 172-4·6·12
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-1}{2*6}=\frac{-18}{12} =-1+1/2 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+1}{2*6}=\frac{-16}{12} =-1+1/3 $
| 18.50x+175.00+220.00=775.00 | | 3a-7=27 | | K+2=(K+1)-(3k+1) | | |x-12|=8 | | O.6x+4/5=0.28x+1.16 | | -2t^2+6t+1=0 | | 15x²+14x+3=0 | | 3/11+x=9/11 | | 750+x(10)=1400 | | 2(2a+3)=a-13 | | 3-(1/3)x^2=0 | | 6,25x^2+1,69=6,5x | | 9-n=4/5n | | 6x^2-5x-38=0 | | 0,25x^2=0,36 | | 6x/7-4=-5 | | 2x+7=x+21= | | 3(y-2)=4-2y | | 3x3-2x2+-7x-2=0 | | 2w+2=2w+7 | | 2x+5=-6x+5 | | 0,25^x2=0,36 | | n^2-n-6480=0 | | 3x(3-x)-14=0 | | 2n-4=0 | | 5y/7-15=5y=30 | | 5x+3=2x=10 | | 4(3x+5)=5x-22 | | 200m+100m+47750=50250-150m | | 200m+100m+47750=50250-150 | | 15x/27=5/9 | | 6x+3=-5x=14 |