If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6a^2+18=39a
We move all terms to the left:
6a^2+18-(39a)=0
a = 6; b = -39; c = +18;
Δ = b2-4ac
Δ = -392-4·6·18
Δ = 1089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1089}=33$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-39)-33}{2*6}=\frac{6}{12} =1/2 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-39)+33}{2*6}=\frac{72}{12} =6 $
| -2/3(k+3)=12 | | 7m2+39m=18 | | 21–7y=14 | | 0.23x+9=4−1.35x | | 7x+17=6x-4+30 | | –16+4w=7w+14 | | a2-4a=12 | | 17x-8=3x-2+106 | | 7b+5-3b=50 | | 4(-2)+2b=-6 | | 7r=78 | | X*(18-x)=54 | | 4x+29=42 | | 3x+36=540 | | 2x+22=41 | | 3/5(2+x)=12 | | 3k^2−10k+7=0 | | (3x-2)/2=x+3 | | 3k^2−10k=−7. | | 3k2−10k=−7 | | (3k-7)(k-3)=0 | | 2/5xx=18 | | 6x-13-x=2 | | t^2−9t+20=0 | | t2−9t+20=0 | | |5u-15|=10 | | 72c=12c= | | x2-80=-2x | | n+(n+1)+(n+2)=-3 | | 7/x+5=57 | | 3^(2x+3)=25 | | (2x)^x=25 |