If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6c^2-19c+-3=0
We add all the numbers together, and all the variables
6c^2-19c=0
a = 6; b = -19; c = 0;
Δ = b2-4ac
Δ = -192-4·6·0
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-19}{2*6}=\frac{0}{12} =0 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+19}{2*6}=\frac{38}{12} =3+1/6 $
| 96=11y=19 | | 60n+1=68n-1 | | 1/4y+7=1/9y | | 23x-(2+65)=4x+57 | | 6y-4=5y-2 | | -(1/3)(9x+42)-5x=-70 | | H=−16t^2+40t+24 | | (-1/3)(9x+42)-5x=-70 | | x+5/3=x-2/4 | | 4(b-6)=-4 | | -2/5k-5/9=-9/7k | | 7w=6+4w | | 2(b+10)=-4 | | -2/9k+9/8=-49/2k | | (5(x+5)/8)=3x+15 | | 7x-35=x+13 | | (5x+10)+(8x+15)=90 | | 0.0625+y=0.0104166667 | | x/2=7/13 | | 4x+6=-2(x+3)+12 | | 3y+4=27 | | 3(4x+12)=180 | | n−35=26 | | (7x+15)+(8x+15)=180 | | u−25=7 | | 2q=78 | | 3=y4 | | (3x+5)+(12x+25)=90 | | 4y²+16y+15=0 | | 1/4y-10=1/7y | | 2(−3x+4)=5x+2 | | 38 = n12 |