If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6h^2+13h-5=0
a = 6; b = 13; c = -5;
Δ = b2-4ac
Δ = 132-4·6·(-5)
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-17}{2*6}=\frac{-30}{12} =-2+1/2 $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+17}{2*6}=\frac{4}{12} =1/3 $
| 4(7+y)=2(7-y)+2 | | 3m-9=5+3m | | 2x×x=512 | | 3(4m+3)-2=12m+7 | | 3x-2=-2x+12 | | 9^2+1=81^x-2/3x | | 5q+11q+2=0 | | 10.1+v÷6=-9.1 | | 2m+1=5m-8 | | 7x-21=5x+87 | | 9+2(x-6)=11-7(x-1) | | (7x+14)(-x-3)=0 | | 6x^2+21x-45=3 | | 4m+2=4m-5 | | 8/x=x/15 | | x÷4=2,5 | | -9-4=4x+4-3x | | 12-44=4(x-2)-8 | | -6(x+3)-11=14+5 | | 3a-7=-16 | | -5(x+9)-43=7-60 | | 6(y-1)=-28 | | 4m-5=2(2m-1)-3 | | -9(y-5)=9 | | 4m-3=2m+12 | | -x+17=-8 | | 2(x-2)=-1 | | -24=4(y+6) | | 3x-2=6x+33 | | 7(y-2)=56 | | -3(x+17)-43=5-42 | | 6x=25x |