If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6h^2-7h-20=0
a = 6; b = -7; c = -20;
Δ = b2-4ac
Δ = -72-4·6·(-20)
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-23}{2*6}=\frac{-16}{12} =-1+1/3 $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+23}{2*6}=\frac{30}{12} =2+1/2 $
| 3(j+18)=81 | | 500=1x+2x+3x+5x+8x+12x+18x+25x | | 11+3s=20 | | 3/5x-1/3=322/3 | | 3+4q=19 | | (x+3)^2=x^2+39 | | 6=3h-12 | | 3/5x-1/3=232/3 | | 21a^2-5=436 | | 13=x50 | | 5(1x-7)=90 | | y+(-5y-9)=-7 | | 2(4x-10)+x=7 | | 3(8y-6)-12y=42 | | 3c−4=2 | | 9x2-14=2x | | c/4-8=2 | | 3^(x+2)=7 | | -4p-p=-2 | | m-(-3m+8)=0 | | 3x+6-5x+15=12 | | 3x/x-2+1x/x=4 | | 11x=2x+27 | | (3x+2)=(7x-1) | | 3x+2-5x+3=12 | | 276-u=116 | | 18-y=2y | | 3x+2-5-3=12 | | 12=4(b-14) | | 236=168-w | | 3a-(7a-1)=3 | | 27+5y=14y |