If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6k^2+13k+7=0
a = 6; b = 13; c = +7;
Δ = b2-4ac
Δ = 132-4·6·7
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-1}{2*6}=\frac{-14}{12} =-1+1/6 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+1}{2*6}=\frac{-12}{12} =-1 $
| w/3-(-3)=-6 | | |x–7|+5=17 | | 6t+7=5t+12 | | 2=2s−2 | | 4g+8=8g | | 8-(7/10)g=6-(1/5)g | | 68=-u4 | | 9(x+2)-3=3(3x+5) | | 44+18x-3=6+25x | | 9z-2=34 | | 11v-14=3v+10 | | 5x+2=-7x+5 | | -5+7x=9+5x | | h/4+15=h/2+3 | | 8+5w=8 | | 7x+5x-32-27=9x-8 | | 4+(-3q)=1 | | 8a+5=7a+11 | | 7x+5x-32-27=9x-8x | | 5-5p+7p-56=-59 | | (7-2i)(-3+4i)=0 | | 5r+31=12r+3 | | x=4.6 | | z/4+9=z/2+6 | | 2c+10=3c | | y/3-(-10)=-14 | | 6x-5x=02 | | p^2+4p+96=0 | | 12c-36=4c+4 | | 13+m=22 | | 9-a/5=-4 | | 6z-6=2z+6 |