If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6m^2+12m=0.
a = 6; b = 12; c = 0;
Δ = b2-4ac
Δ = 122-4·6·0
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-12}{2*6}=\frac{-24}{12} =-2 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+12}{2*6}=\frac{0}{12} =0 $
| x=2+7/8 | | 3x+9=32-x | | 15x-3=7x+20 | | X^2-4x-6=6 | | 9x=608 | | 4x-5+2(x-3)=12x+7) | | 5n-7n=1 | | x+3/8=19/24 | | 48x5=27x3=0 | | 3(1+w)=50 | | 0.05(1-x)+0.3x=0.03 | | n=10=120 | | (2/3)(x-3)=8 | | 48x5+27x3=0 | | 13x+9(7-12(-10x-14)=4(2x-8) | | 6x+14=3x-19 | | 12x=8x-7 | | 6x+14=6x−19 | | 13x+9(7-12-10x-14)=4(2x-8) | | 4.50x-7=4 | | x+84=120+x | | 20x-180= | | 17-3=7+y | | 7y+12=4y-6 | | 7(1-x)+2=-9 | | 5*25^2x+3=(1/125)^1-x | | 10n+7/6=9.5 | | -40(g-1)=24 | | 1-4(6x+10)=2x+13 | | 3(2x+6=2(4x-6 | | (28.274)x=231 | | 6y+3=9+5(3y+6) |