If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6m^2+8m-2=0
a = 6; b = 8; c = -2;
Δ = b2-4ac
Δ = 82-4·6·(-2)
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{7}}{2*6}=\frac{-8-4\sqrt{7}}{12} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{7}}{2*6}=\frac{-8+4\sqrt{7}}{12} $
| 10^n=1 | | 7d+15=99 | | 7x+12+3x=−6(x−7)+ | | 3/2+x=-1/2 | | -2+9=36+x | | n+1/10=3/10 | | 1000(1.10)^x=2000(0.95)^x | | -12=4(x-6)-8x | | f+9/10=9 | | -26=k-15 | | 3^4x-7=243^2x-1 | | 6x+3=4x–6–x | | n/21=12 | | v-371=99 | | -12d-17=-10d+16-5d | | 22f=858 | | -4(4h-5)=20-16h | | b/17=13 | | -12g+5-9=-12g-4 | | 1/3v-3/5=-1/4 | | (2x+5)^2+3=81 | | 19f=-6(-2f+7) | | 12=36+x | | 996=s+2 | | 25x=15(x+2) | | -4=3+7(1x-1) | | -13g-18+6=-12-13g | | -2x=6x−24 | | d+21=205 | | 693=g+458 | | -15b-20+6b=20-7b | | 15(x-2)=2x(12.5) |