If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 6n(n + 1) = 3 + -1n Reorder the terms: 6n(1 + n) = 3 + -1n (1 * 6n + n * 6n) = 3 + -1n (6n + 6n2) = 3 + -1n Solving 6n + 6n2 = 3 + -1n Solving for variable 'n'. Reorder the terms: -3 + 6n + n + 6n2 = 3 + -1n + -3 + n Combine like terms: 6n + n = 7n -3 + 7n + 6n2 = 3 + -1n + -3 + n Reorder the terms: -3 + 7n + 6n2 = 3 + -3 + -1n + n Combine like terms: 3 + -3 = 0 -3 + 7n + 6n2 = 0 + -1n + n -3 + 7n + 6n2 = -1n + n Combine like terms: -1n + n = 0 -3 + 7n + 6n2 = 0 Factor a trinomial. (-3 + -2n)(1 + -3n) = 0Subproblem 1
Set the factor '(-3 + -2n)' equal to zero and attempt to solve: Simplifying -3 + -2n = 0 Solving -3 + -2n = 0 Move all terms containing n to the left, all other terms to the right. Add '3' to each side of the equation. -3 + 3 + -2n = 0 + 3 Combine like terms: -3 + 3 = 0 0 + -2n = 0 + 3 -2n = 0 + 3 Combine like terms: 0 + 3 = 3 -2n = 3 Divide each side by '-2'. n = -1.5 Simplifying n = -1.5Subproblem 2
Set the factor '(1 + -3n)' equal to zero and attempt to solve: Simplifying 1 + -3n = 0 Solving 1 + -3n = 0 Move all terms containing n to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + -3n = 0 + -1 Combine like terms: 1 + -1 = 0 0 + -3n = 0 + -1 -3n = 0 + -1 Combine like terms: 0 + -1 = -1 -3n = -1 Divide each side by '-3'. n = 0.3333333333 Simplifying n = 0.3333333333Solution
n = {-1.5, 0.3333333333}
| 4x-8=-4(-2x-3) | | 3p^2-7p+4=0 | | (2x^3-6x+1)-(4x^3-2x-3)= | | 4x^3+3x=x | | y+2=4(x-8) | | 11x-47=49-21x | | x^4+y^2=2xy+4 | | (5x^2-4)+(2x^2+3)-(3x^2-5)= | | 11x+47=49-21x | | y-5=3(x+4) | | 3a+5b=7 | | 10a+48=948 | | (4c^2+3c-2)+(3c^2+4c+2)= | | x^2-1=1-x^2 | | 3a+5b=7finda | | 6(2)-3b=72 | | 40+7x=5-14x | | 2x^4+2y^4=4xy-1 | | 14x+15=3(8x-15) | | 2(x-12)+13=4x+17 | | 5(x+4)=6(x-6) | | 55x-5y=5.7 | | 100m^8+9= | | 50*1+5+5*10-10= | | 6r+5d-5r= | | (x-8)-(x+6)=9x | | 5/13=y | | 3/5x-78 | | 4x+23=-33 | | 5x+11=4x+4 | | 7(7x-2)=27+8x | | -69+7x=93+x |