6n(n-1)=2(2n+4)

Simple and best practice solution for 6n(n-1)=2(2n+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6n(n-1)=2(2n+4) equation:


Simplifying
6n(n + -1) = 2(2n + 4)

Reorder the terms:
6n(-1 + n) = 2(2n + 4)
(-1 * 6n + n * 6n) = 2(2n + 4)
(-6n + 6n2) = 2(2n + 4)

Reorder the terms:
-6n + 6n2 = 2(4 + 2n)
-6n + 6n2 = (4 * 2 + 2n * 2)
-6n + 6n2 = (8 + 4n)

Solving
-6n + 6n2 = 8 + 4n

Solving for variable 'n'.

Reorder the terms:
-8 + -6n + -4n + 6n2 = 8 + 4n + -8 + -4n

Combine like terms: -6n + -4n = -10n
-8 + -10n + 6n2 = 8 + 4n + -8 + -4n

Reorder the terms:
-8 + -10n + 6n2 = 8 + -8 + 4n + -4n

Combine like terms: 8 + -8 = 0
-8 + -10n + 6n2 = 0 + 4n + -4n
-8 + -10n + 6n2 = 4n + -4n

Combine like terms: 4n + -4n = 0
-8 + -10n + 6n2 = 0

Factor out the Greatest Common Factor (GCF), '2'.
2(-4 + -5n + 3n2) = 0

Ignore the factor 2.

Subproblem 1

Set the factor '(-4 + -5n + 3n2)' equal to zero and attempt to solve: Simplifying -4 + -5n + 3n2 = 0 Solving -4 + -5n + 3n2 = 0 Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. -1.333333333 + -1.666666667n + n2 = 0 Move the constant term to the right: Add '1.333333333' to each side of the equation. -1.333333333 + -1.666666667n + 1.333333333 + n2 = 0 + 1.333333333 Reorder the terms: -1.333333333 + 1.333333333 + -1.666666667n + n2 = 0 + 1.333333333 Combine like terms: -1.333333333 + 1.333333333 = 0.000000000 0.000000000 + -1.666666667n + n2 = 0 + 1.333333333 -1.666666667n + n2 = 0 + 1.333333333 Combine like terms: 0 + 1.333333333 = 1.333333333 -1.666666667n + n2 = 1.333333333 The n term is -1.666666667n. Take half its coefficient (-0.8333333335). Square it (0.6944444447) and add it to both sides. Add '0.6944444447' to each side of the equation. -1.666666667n + 0.6944444447 + n2 = 1.333333333 + 0.6944444447 Reorder the terms: 0.6944444447 + -1.666666667n + n2 = 1.333333333 + 0.6944444447 Combine like terms: 1.333333333 + 0.6944444447 = 2.0277777777 0.6944444447 + -1.666666667n + n2 = 2.0277777777 Factor a perfect square on the left side: (n + -0.8333333335)(n + -0.8333333335) = 2.0277777777 Calculate the square root of the right side: 1.424000624 Break this problem into two subproblems by setting (n + -0.8333333335) equal to 1.424000624 and -1.424000624.

Subproblem 1

n + -0.8333333335 = 1.424000624 Simplifying n + -0.8333333335 = 1.424000624 Reorder the terms: -0.8333333335 + n = 1.424000624 Solving -0.8333333335 + n = 1.424000624 Solving for variable 'n'. Move all terms containing n to the left, all other terms to the right. Add '0.8333333335' to each side of the equation. -0.8333333335 + 0.8333333335 + n = 1.424000624 + 0.8333333335 Combine like terms: -0.8333333335 + 0.8333333335 = 0.0000000000 0.0000000000 + n = 1.424000624 + 0.8333333335 n = 1.424000624 + 0.8333333335 Combine like terms: 1.424000624 + 0.8333333335 = 2.2573339575 n = 2.2573339575 Simplifying n = 2.2573339575

Subproblem 2

n + -0.8333333335 = -1.424000624 Simplifying n + -0.8333333335 = -1.424000624 Reorder the terms: -0.8333333335 + n = -1.424000624 Solving -0.8333333335 + n = -1.424000624 Solving for variable 'n'. Move all terms containing n to the left, all other terms to the right. Add '0.8333333335' to each side of the equation. -0.8333333335 + 0.8333333335 + n = -1.424000624 + 0.8333333335 Combine like terms: -0.8333333335 + 0.8333333335 = 0.0000000000 0.0000000000 + n = -1.424000624 + 0.8333333335 n = -1.424000624 + 0.8333333335 Combine like terms: -1.424000624 + 0.8333333335 = -0.5906672905 n = -0.5906672905 Simplifying n = -0.5906672905

Solution

The solution to the problem is based on the solutions from the subproblems. n = {2.2573339575, -0.5906672905}

Solution

n = {2.2573339575, -0.5906672905}

See similar equations:

| 65=2(x-5)-2(x+15) | | 6p-2p=8 | | 9c-6d+4=-3d | | -10=10m-90 | | (K+1)3= | | 8-20x=15+x | | 19q+19-8=-13+11q | | 9x^2-42+49=0 | | 2a+4a+6a-3= | | 21+4x-13=32 | | 12x=27-3x | | 8(-8-8v)=-7-7v | | 25x-13=32 | | 15+.10h=10+.15h | | -6y+4=(4y+12) | | 5z-5=-12+6z | | -9x+1=-50 | | 54=1.8x | | -6y+6(-2y+2)=5-8(-2-y) | | 1200+45h=1800+45h | | -4s=-5s+12 | | -15p-(-18p)=8 | | .10x+.12(70000-x)=7400 | | 4y-2(3y-5)+3= | | 2x-142+5x=61 | | 3+3=3 | | 2x-10=4x-40 | | 1200+45x=1800+45x | | 5-y=3(0) | | 2-3x=2x-5x-7 | | (5y^4+2(x^3)y)dx-(4xy^3+x^4)dy=0 | | 2(v-1)+5(2v+8)=2 |

Equations solver categories