If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6n^2-19n+10=0
a = 6; b = -19; c = +10;
Δ = b2-4ac
Δ = -192-4·6·10
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-11}{2*6}=\frac{8}{12} =2/3 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+11}{2*6}=\frac{30}{12} =2+1/2 $
| .9+4.1=3.3x-2.3x-4.3 | | -3v+3=9 | | 5(x-1)-1=-26 | | 4x+13=3x+9 | | -16^2+16t+96=0 | | 5(2w+1)=-7 | | 5(x+1)-1=-26 | | 3-3=9x+4x | | M2-4m+1=0 | | 22.50=(2x)+(2x+x)+x | | 5w=64-3 | | n2−4n+4=0 | | -4y-9=7 | | -3.5=-0.9u+0.4u | | -2w+9=3 | | (2x-6)-(60-x)=180 | | (2x-6)-(60-x)=90 | | 40/x-1=15/6 | | (2x-6)+(60-x)=1100 | | (2x-6)+(60-x)=50 | | 35+w=6w | | 9x+26-32=4x | | (2x-6)+(60-x)=77 | | 2=8h | | (2x-6)+(60-x)=74 | | (2x-6)+(60-x)=75 | | (2x-6)+(60-x)=78 | | x+30=100-10 | | (2x-6)+(60-x)=80 | | -3=2v-7 | | -6x-12=-96 | | (2x-6)+(60-x)=45 |