If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6p-2(1-p)=1p+3p(1-p)
We move all terms to the left:
6p-2(1-p)-(1p+3p(1-p))=0
We add all the numbers together, and all the variables
6p-2(-1p+1)-(1p+3p(-1p+1))=0
We multiply parentheses
6p+2p-(1p+3p(-1p+1))-2=0
We calculate terms in parentheses: -(1p+3p(-1p+1)), so:We add all the numbers together, and all the variables
1p+3p(-1p+1)
We add all the numbers together, and all the variables
p+3p(-1p+1)
We multiply parentheses
-3p^2+p+3p
We add all the numbers together, and all the variables
-3p^2+4p
Back to the equation:
-(-3p^2+4p)
-(-3p^2+4p)+8p-2=0
We get rid of parentheses
3p^2-4p+8p-2=0
We add all the numbers together, and all the variables
3p^2+4p-2=0
a = 3; b = 4; c = -2;
Δ = b2-4ac
Δ = 42-4·3·(-2)
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{10}}{2*3}=\frac{-4-2\sqrt{10}}{6} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{10}}{2*3}=\frac{-4+2\sqrt{10}}{6} $
| 8v+25=v+38 | | -8x+7-x=3+4x-9 | | 5x+7x=679 | | 6p+(-2)(1-p)=1p+3p(1-p) | | 3p-6=3p+8 | | 6p+-2(1-p)=1p+3p(1-p) | | 5w-80=4w-59 | | 9.06x+3.47(8x-5)=12.03x+0.5610 | | 6t+3(5t-4)=12(12(2t-5) | | 4b-64=b+68 | | 2y-13=y | | 3u+43=4u+20 | | 4s-21=3s+68 | | 2c-29=6c-97 | | 3t-58=2t-9 | | 5a+1=8a-2 | | -6=2(u+-6) | | 4u=–92= | | 4x+9=13x-18 | | -2-8s=5-7-5s | | 3v-15=2v | | 4x-40=3x-18 | | 6p=-2p | | 7p+4=8p | | x+18+x+18=48 | | 3f=4+5f | | 6x-37=x+46 | | -140=-2(8r+6)r= | | -3+3j=j+9 | | Y+43=4y+92 | | 2x/18=45/78 | | 2a-17=a |