If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6p-5(7p+5)=-p(p+21)
We move all terms to the left:
6p-5(7p+5)-(-p(p+21))=0
We multiply parentheses
6p-35p-(-p(p+21))-25=0
We calculate terms in parentheses: -(-p(p+21)), so:We add all the numbers together, and all the variables
-p(p+21)
We multiply parentheses
-p^2-21p
We add all the numbers together, and all the variables
-1p^2-21p
Back to the equation:
-(-1p^2-21p)
-(-1p^2-21p)-29p-25=0
We get rid of parentheses
1p^2+21p-29p-25=0
We add all the numbers together, and all the variables
p^2-8p-25=0
a = 1; b = -8; c = -25;
Δ = b2-4ac
Δ = -82-4·1·(-25)
Δ = 164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{164}=\sqrt{4*41}=\sqrt{4}*\sqrt{41}=2\sqrt{41}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{41}}{2*1}=\frac{8-2\sqrt{41}}{2} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{41}}{2*1}=\frac{8+2\sqrt{41}}{2} $
| -6p-5(7p+5=-p(p+21) | | x^2=1,012.5 | | 40+8p=2-5(1+7p) | | 6p-5(7p+5=-p(p+21) | | 3(2x+1)=6x-7 | | 2÷-7n+6=8 | | 453-4.72x+0.0114x^2=531 | | 4(w-2=-3w-15 | | 0=(90+10x)(250-5x) | | X=9/d | | -2=x+6-3x | | 453-4.72x+0.0114x^2=163 | | 453-4.72x+0.0114x^2=0 | | 8(2a-7)=28+4a | | 5x+30=44 | | (5x+4)+(5x+4)=180 | | 2(a+7)-2a=a+8 | | 12+6x=6x+12 | | 4.6=3.4x+7.2 | | (5x+4)=(5x+4) | | 1/4x-1/2x=3 | | -33x=9 | | 3x+5x-x=490 | | 9(10+x)=8x+90 | | 11.5w+8=10 | | V-2=12+v-7-7 | | |w|-11=-6 | | -182=8(8n-6) | | (3x+7)+(2x+15)=180 | | 3(3x+4)=1/4(32x56) | | 4/5*w=3.6 | | 17=24-n |