If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6p^2+33p=0
a = 6; b = 33; c = 0;
Δ = b2-4ac
Δ = 332-4·6·0
Δ = 1089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1089}=33$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(33)-33}{2*6}=\frac{-66}{12} =-5+1/2 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(33)+33}{2*6}=\frac{0}{12} =0 $
| 3x-9x+6=20-3x+4x-10.5x=-9.6x+7.47 | | 5(r-71)=60 | | 72+4t=400 | | -10.5x=-9.6x+7.47 | | x=24x^2 | | 3x-2+x-5x=-1 | | -16t-20=-15t | | 5(r−71)=60 | | b2+3b=0 | | 6q-7=5q+4 | | 9y+4=-9y-4 | | 6(2x-5)=5x-6+3x | | 20=2(-4x-7) | | r2-14r=0 | | -8k+3k-4=-3k+10 | | c+28/7=8 | | 4/9x=4/54 | | x^2+1x=110 | | 9d-4=3d+6-4 | | x÷17=26 | | 14+(-18)=6x-4-5x | | 10(y-86)=80 | | (4m+7)(3m-8)=0 | | 80=56/6x | | 1-6t=3t+10 | | (0.9)^x=0.05 | | 4r=22r-7r | | 0.90^x=0.05 | | 5c+5+10c=–5c+5 | | 8+(-16)=6x-8-5x | | 82+0.6=85h | | 15=3f+3 |